ASSESSMENT OF MIXING PROPERTIES OF LIQUID Cu-Sb ALLOY AT DIFFERENT TEMPERATURES

PDF

Published: 2020-12-16

Page: 512-525


MANOJ GAUTAM *

Mahendra Morang Aadarsh Multiple Campus, Tribhuvan University, Nepal.

*Author to whom correspondence should be addressed.


Abstract

The addition of copper (Cu) can decrease the toxicity of the most usable element antimony (Sb). Concentration-dependent thermodynamic, microscopic structural and transport properties of Cu-Sb melt at different temperatures were examined using the quasi-lattice theory of mixing. Moelwyn-Hughes’s approach was implemented for the computation of viscosity. Liquid Cu-Sb shows the segregating nature in the Sb rich region and the ordering nature in the Cu rich region at the temperature range of 1190-1490 K. The viscosity of the respective alloy decreases with an increase in temperature.

Keywords: Antimony, quasi lattice test, segregating nature, liquid alloy, mixing properties, copper-based alloy.


How to Cite

GAUTAM, M. (2020). ASSESSMENT OF MIXING PROPERTIES OF LIQUID Cu-Sb ALLOY AT DIFFERENT TEMPERATURES. Asian Journal of Advances in Research, 3(1), 512–525. Retrieved from https://mbimph.com/index.php/AJOAIR/article/view/1751

Downloads

Download data is not yet available.

References

Yadav SK, Lamichhane S, Jha LN, Adhikari NP, Adhikari D. Physics and chemistry of liquids, mixing behavior of Ni-Al melt at 1873 K. 2016;54:370. DOI:https://dx.doi.org/10.1080/00319104.2015.1095640

Bhatia AB, Singh RN. Thermodynamic properties of compound forming molten alloys in a weak interaction approximation. Physics and Chemistry of Liquids. 1982;11:343. DOI:https://dx.doi.org/10.1080/00319108208080755

Budai I, Benko MZ, Kaptay G. Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys. Materials Science Forum. 2007;537-538:489. DOI:https://dx.doi.org/10.4028/www.scientific.net/MSF.537-538.489

Koirala I, Jha IS, Singh BP, Adhikari D. Thermodynamic, transport and surface properties in In-Pb liquid alloys. Physica B. 2013;423:49. DOI:https://dx.doi.org/10.1016/j.physb.2013.04.051

Vora AM. Study of thermodynamic properties of liquid binary alloys by a pseudopotential method. Journal of Engineering Physics and Thermophysics. 2010;83. DOI:https://dx.doi.org/10.1007/s10891-010-0432-1

Anusionwu BC, Llo-Okeke EO. Segregation and surface properties of In-Zn liquid alloys. Physics and Chemistry of Liquids. 2006;43: 25. DOI:https://dx.doi.org/10.1080/0031910042000303527

Adhikari D, Yadav SK, Jha LN. Thermo-physical properties of Mg-Tl melt. Journal of Basic and Applied Research International. 2015;9:103. Available:https://www.academia.edu/39037645/THERMO_PHYSICAL_PROPERTIES_OF_Mg_Tl_MELT

Hoc NQ, Viet LH, Dung NT. On the melting of defective FCC interstitial alloy c-FeC under pressure up to 100 GPa. Journal of Electronic Materials. 2019;49:910. DOI:https://dx.doi.org/10.1007/s11664-019-07829-9

Dung NT, Phuong NT. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. Journal of Molecular Structure. 2020;1218:1. DOI:https://dx.doi.org/10. 1016/j.molstruc.2020.128498

Dung NT, Phuong NT. Factors affecting the structure, phase transition and crystallization process of AlNi nanoparticles. Journal of Alloys and Compounds. 2020;812:1. DOI:https://dx.doi.org/10.1016/j.jallcom.2019.152133

Dung NT, Kien PH, Phuong NT. Simulation on the factors affecting the crystallization process of FeNi alloy by molecular dynamics. ACS Omega. 2019A. DOI:https://dx.doi.org/10.1021/acsomega.9b02050

Dung NT, Phuong NT. Molecular dynamic study on factors influencing the structure, phase transition and crystallization process of NiCu6912 nanoparticle. Materials Chemistry and Physics. 2020;250:1. DOI:https://dx.doi.org/10.1016/j.matchemphys.2020.123075

Dung NT. Influence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1-xFex (x = 0:1, 0.3, 0.5) nanoparticles. Modern Physics Letters B. 2018;1850204:1. DOI:https://dx.doi.org/10.1142/S0217984918502044

Tuan TQ, Dung NT. Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1-xCux bulk; x = 0.1, 0.3, 0.5, 0.7. International Journal of Modern Physics B. 2018;32:1830009-1. DOI:https://dx.doi.org/10.1142/S0217979218300098

Filella M, Belzile N, Chen YW. Antimony in the environment: A review focused on natural waters I. Occurrence, Earth-Science Reviews. 2002;57:125. DOI:https://dx.doi.org/10.1016/S0012-8252(01)00070-8

Cooper RG, Harrison AP. The exposure to and health effects of antimony. Indian Journal of Occupational and Environmental Medicine. 2009;13:3. DOI:https://dx.doi.org/10.4103/0019-5278.50716

Grund SC, Hanusch K, Breunig HJ, Wolf HU. Antimony and antimony compounds. Encyclopedia of Industrial Chemistry. 2012;4:11. DOI:https://dx.doi.org/10.1002/14356007.a03_055.pub2

Dillis S, Meert AVH, Leeming P, Shortland A, Gobejishvili G, Abramishvili M, Degryse P. Antimony as a raw material in ancient metal and glass making: Provenancing Georgian LBA metallic Sb by isotope analysis. Star: Science & Technology of Archaeological Research; 2019. DOI:https://dx.doi.org/10.1080/20548923.2019.1681138

Vargas B, Ramos E, Gutierrez EP, Alonso JC, Ibarra DS. A direct bandgap copper-antimony halide perovskite. Journal of the American Chemical Society. 2017;139:9116. DOI:https://dx.doi.org/10.1021/jacs.7b04119

Dupont D, Arnout S, Jones PT, Binnemans K. Antimony recovery from end-of-life products and industrial process residues: A critical review. Journal of Sustainable Metallurgy. 2016;2:79. DOI:https://dx.doi.org/10.1007/s40831-016-0043-y

Hansell C. All manner of Antimony. Nature Chemistry. 2015;7:88. DOI: https://dx.doi.org/10.1038/nchem.2134

Senkara J, Wlosinski WK. Surface phenomena at the interfaces of the tungsten-liquid Cu-Sb alloy system. Journal of Materials Science. 1985;20:3597. DOI: https://dx.doi.org/10.1007/BF01113766

Matsuura M, Suzuki K. Thermoelectric power of liquid Cu-Sb and Ag-Sb alloy systems. The Philosophical Magazine. 1975;31:969. DOI:https://dx.doi.org/10.1080/00318087508226822

Gierlotka W, Handzlik DJ. Thermodynamic description of the Cu-Sb binary system. Journal of Alloys and Compounds. 2009;484:172. DOI:https://dx.doi.org/10.1016/j.jallcom.2009.05.056

Furtauer S, Flandorfer H. A new experimental phase diagram investigation of Cu-Sb. Monatshefte fur Chemie. 2012;143:1275. DOI:https://dx.doi.org/10.1007/s00706-012-0737-1

Cheng J, Grobner J, Hort N, Kainer KU, Fetzer RS. Measurement and calculation of the viscosity of metals – A review of the current status and developing trends. Measurement Science and Technology. 2014;25. DOI:https://dx.doi.org/10.1088/0957-0233/25/6/062001

Smithells CJ. The physical properties of liquid metals. Smithells Metals Reference Book. 1992;14-6.

Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelly KK. Selected values of the thermodynamic properties of binary alloys; 1973.

Yadav SK, Jha LN, Jha IS, Singh BP, Koirala RP, Adhikari D. Prediction of thermodynamic and surface properties of Pb-Hg liquid alloys at different temperatures. Philosophical Magazine; 2016. DOI:https://dx.doi.org/10.1080/14786435.2016.1181281