Main Article Content



The following review is focused on two fundamental problems investigated by our team:


  • The formation of a scalable self-sustained volume discharge in strongly electronegative gases and the creation of wide-aperture high-energy non-chain HF (DF) chemical lasers;
  • The generation spectrum of a non-chain HF(DF) chemical lasers expanding and creating lasers with high energy per pulse, pulsed and average power in the spectral range > 4.1 μ


High energy/power lasers, non-chain chemical lasers, wide-aperture laser system, electronegative gas.

Article Details

How to Cite
APOLLONOV, V. V., & KAZANTSEV, S. Y. (2021). HF (DF) ECOLOGICALLY SAFE HIGH-ENERGY/POWER LASERS: A REVIEW. Asian Journal of Advances in Research, 6(3), 12-26. Retrieved from http://mbimph.com/index.php/AJOAIR/article/view/1910
Review Article


Gross RWF, Bott JF. Handbook of chemical lasers //New York, Wiley-Interscience. 1976;754:1976.

Handbook, Editor AM. Prokhorov, Moscow, Sovetskoe radio; 1978.

Bashkin АS.e t al, Chemical lasers, Мoscow, Science; 1982.

Apollonov VV. High power lasers in our life. – Nova; 2016.

Lillesand T, Kiefer RW, Chipman J. Remote sensing and image interpretation. – John Wiley & Sons; 2014.

Cook J. High-energy laser weapons since the early 1960s// Optical Engineering. 2012;52(2):021007.

Perram GP, Marciniak MA, Goda M. High energy laser weapons: technology overview// Proc. SPIE. 2004;5414:1–25.

Boreisho АS. High power chemical lasers, QE V. 2005;35(5):393-406.

Аblekov VК. et al. Chemical lasers, Мoscow, Atomizdat; 1980.

Deutsch TF. Molecular laser action in hydrogen and deuterium halides// Applied Physics Letters. 1967;10:234.

Kompa KL, Pimentel GC. Hydrofluoric acid chemical laser. Journal of Chemical Physics. 1967;47:857.

Eletskiy АV. Proceses in chemical lasers. UFN. 1981;134(2):237-278.

Bortnik IM. Physical properties and electrical stability of elegas. – Мoscow, Energoatomizdat; 1998.

Baranov V. Yu.et al. Parametric investigations of non-chain HF-laser QE. 1981;11(6):1173-1178.

Agroskin VY et al. Aerosol sounding with a lidar system based on a DF-laser // Appl. Phys. B. 2005;81(8):1149–1154.

Gordon ЕB. et al. Spectrum control of pulsed chemical HF-laser. Ch4emical Physics. 1993;12(10):1359.

Obara M, Fujioka T, Pulsed HF. Chemical lasers from Reactions of Fluorine Atoms with Benzene, Toluene, Xylene, Methanol, and Acetone// Jap. J. Appl. Phys. 1975;14(8):1183-1187.

Green WH, Lin MC. Pulsed discharge initiated chemical lasers. III. Complete Population Inversion in HF. The Journal of Chemical Physics. 1971;54:3222.

Bagratashvili VN et al. Electrochemical high pressure НF-laser, Letters to J of E T Ph. 1973;18(2):110-113.

Lomaev МI. et al, Spectral characteristics of non-chain HF(DF)-lasers pumped by VSSD, Optics of atmosphere and ocean. 2014;27(4):341-345.

Кazantsev S Yu. HF(DF) lasers, initiated by self-sustained discharge. Dissertation, Мoscow; 2002.

Papagiakoumou BS.et al, Pulsed HF laser ablation of dentin// Proc. SPIE. 2005;5777:978-981.

Izatt J, Sankey N, Partovi F. Ablation of calcified biological tissue using pulsed HF laser radiation // IEEE J. Quanum Electronics. 1990;26:2261-2269.

Furzikov NP. The nature of ablation by IR laser radiation. QE. 1991;18(2):250–253.

Wolbarsht ML. Laser Surgery: CO2 or HF // IEEE J. Quanum Electronics. 1984;20:1427.

Velikanov SD et al. ZnSe:Fe2+- laser pumped by HF-laser. QE. 2014;44(2):141-144.

Baranov V. Yu. et al. Investigation of spectral, time and energy characteristics of HF-laser, Tsniiatominform, preprint IAE. 1983;3780/14:31.

Jones CR, Buchwald MI. Ammonia laser optically pumped with an HF laser// Optics Communications. 1978;24:27.

Evans DK, Robert D. McAlpine, McClusky FK. Laser isotope separation and the multiphoton dissociation of formic acid using a pulsed HF laser // Chemical Physics. 1978;32:81-91.

Fedotov ОG, Fomin OV. Electric discharge HF-laser for holography. J of Technical Physics. 2018;88(2):258-264.

Lazarenko VI, Velikanov SD, Pegoev IN, Sinkov SN, Frolov Yu. N. Analysis of DF laser applicability to SO2 remote sensing in the atmosphere // Proc. SPIE. 2001;4168:232–235.

Velikanov SD. et al. Application of DF-laser for analysis of atmosphere QE. 1997;24(3):279–282.

Jensen RJ, Rice WW. Electric discharge initiated SF6-H2 and SF6-HBr chemical lasers// Chemical Physics Letters. 1970;7:627-629.

Jacobson TV, Kimbell GH. Transversely pulse-initiated chemical lasers: Atmospheric-pressure operation of an HF laser // Journal of Applied Physics. 1971;42:3402-3405.

Jacobson TV, Kimbell GH. WC 8 Parametric studies of pulsed HF lasers using transverse excitation. IEEE J. Quantum Electronics. 1973;9:173-181.

Zapolskiy АF et al, Electical discharge laser on a mixture of SF6 - H2 QE. 1979;6:408.

Wlodarczyk G. A photopreionized atmospheric pressure HF Laser. IEEE J. Quantum Electronics. 1978;14:768-771.

Midorikava M, Sumida S, Sato Y, Obara M, Fujioka T. An UV preionised self sustained discharge HF/DF laser. IEEE J. Quantum Electronics. 1979;15:190.

Anderson N, Bearpark T, Scott SJ. An X-ray preionised self sustsined discharge HF/DF laser// Applied Physics B. 1996;63:565-573.

Voigner F., Gastaund M. Improved performance of a double discharge initiated pulsed HF chemical laser// Applied Physics Letters. – V. 25. – P. 649,1974

Pummer H, Breitfeld W, Welder H, Klement G, Kompa KL. Parameter study of 10-J hydrogen fluoride laser// Applied Physics Letters. 1993;22(7):319.

Puech V, Prigent P, Brunet H, High-efficiency, high-energy performance of a pulsed HF laser pumped by Phototriggered Discharge// Applied Physics B. 1992;55:183-185.

Mac-Daniel, Gas lasers, Мoscow, MIR; 1986.

Korolev Yu. D. et al. Physics of pulsed gas breakdown, Мoscow, Science; 1991.

Raizer Yu P. Physics of gas discharge Физика газового разряда. – Мoscow, Science; 1991.

Bychkov Yu. I. et al. Pulsed discharge in a gas for the case of intensive ionization by electrons. UFN. 1978;3:451-475.

Оsipov VV. SSVDin the gas. UFN. 2000;170(3):225-245.

Slovetsky DI. et al, Функции распределения электронов по энергиям и взаимодействие электронов с многоатомными фторсодержащими газами: Plasma chemistry book. Moscow, Energoatomizdat. 1987;13:240-277.

Gordon ЕB. et al, Energy price for F-atoms creation in the case of pulsed electric discharge. Chemical Physics. 1989;8(9):1212.

Bashkin AS. et al. About energy input for the case of F atoms creation by E-beam interaction. QE. 1983;10:428.

Yamschikov VA. et al, Fundamentals for electric discharge initiation of СО2, N2 and F2-lasers, Мoscow, Physmatgiz; 2015.

Burtsev VA. et al, Formation of volume and gliding NS-discharges in the case of gas lasers. VII All-Union conference, Tartu. 1984;414-416.

Apollonov VV. High-energy molecular lasers. Springer Series in Optical Sciences; 2016.

Mesyats GA. et al, Pulsed gas lasers. Мoscow, Science; 1991.

Vinogradov АS et al, SF6 absorbtion in the area of the soft X-ray radiation. Optics and spectroscopy. 1972;32:33-37.

Genkin SA et al, Soft X-ray application for SSVD iunitiation in a big gao. Letters to JTP. 1982;10(11):641-644.

Geiman VG et al. VSSD formation in a big discharge gap. JTP. 1985;55(12);2347-2353.

Spichkin GL. High voltage pulsed VSSD. JTP, 1986;56:1923-1932.

Brink DJ, Hasson V. Compact megawatt helium-free TEA HF/DF lasers. Journal of Physics E: Scientific Instruments. 1980;13:553-556.

Apollonov VV, et al. VSSD formation for СО2-laser pumping QE. 1987;14:1940-1942.

Bel`kov ЕP et al. VSSD formation in the electronegatve mixtures JTP. 1982;52:1794-1801.

Maluta DD. Chemical pulsed HF- laser on the mizture of С3Н8 / SF6, initiated by electric discharge QE. 1983;10:441-443.

Apollonov VV. et al, Low ionization additives influence on the SSVD stability of СО2-lasers. QE. 1988;15:С553-560.

Wensel RG, Arnold GP. A double-discharge-initiated HF laser. IEEE J. Quantum Electronics. 1972;8:26-27.

Arnold GP, Wensel RG. Improved performance of an electrically initiated HF laser. IEEE J. Quantum Electronics. 1973;9:491-493.

Apollonov VV et al. High-power SSD-based pulse nonchain HF(DF) laser. Proceedings of SPIE, High-Power Laser Ablation. 1998;3343:783-788.

Apollonov VV. et al. SIVD based non-chain HF-lases. QE. 2000;30(3):207-214.

Velikanov SD et al. Phisical aspects of HF (DF)- lasers creation. QE. 1997;24(1):11-14.

Harris MR, Morris AV, Gorton EK. Closed-cycle 1-kHz-pulse-repetition-frequency HF(DF) laser. Proceedings of SPIE. 1998;3268:247-251.

Zhou S, Ma L, Huang K. et.al. Experimental investigation on factors influencing output energy stability of non-chain HF laser. High Power Laser and Particle Beams. 2015;27(9):091001.

Serafetinidest AA, Rickwood KR. Improved performance of small and compact TEA pulsed HF lasers employing semiconductor preionisers. Journal of Physics E: Scientific Instruments. 1989;22:103-107.

Hatch CB. A compact, resistive electrode HF laser suitable for optical studies of semiconductors. Journal of Physics E: Scientific Instruments. 1980;13:589-591.

Velicanov SD et al, Some features of SSVD formation for HF(DF)-laser realization QE. 1998;25(10):925–926.

Andramanov AV. et al. High frequency HF-laser QE. 2006;36(3):235–238.

Aksenov Yu. N. et al, Pulse-periodic DF-laser with power 400 W. QE. 2001;31(4):290-292.

Lazarenko VI. X All- Russian conference of young scientists, Editor Garanin SG. 2017;133-140.

Apollonov VV. et al. High efficiency non-chain HF(DF)-lasers. Letters to JTP. 1996;22(24):60-63.

Bulaev VD et al. Experimental investigation of non-chain HF-laser. QE. 2001;31(3):218–220.

AndreevYu. M.et al. ZnGeP2 – laser pumped by DF –laser radiation. QE. 1992;19(11):1110.

Weis TA, Goldberg LS. Singly resonant CdSe parametric oscillator pumped by an HF laser. Applied Physics Letters. 1974;24:389.

Garnov SV. et al. Laser based methods of tera-Hz pulses generation. UFN. 2011;181(1):97-102.

John H. Smith, Dean W. Robinson chemical pumping of pure rotational HF lasers. The Journal of Chemical Physics. 1981;74:5111.

Geraldine L. et al. HF rotational laser emission from the ClF/H2 reaction: Time evolution of the gain. The Journal of Chemical Physics. 1984;80:1162.

Molevich NЕ et al. Pulsed H2-F2-laser. QE. 2011;41(5):427-429.

Kozlovsky VI. et al. Pulsed Fe2+:ZnS-laser. QE. 2011;41:1-3.

Kernal J, Fedorov VV, Gallian A, Mirov SB, Badikov VV. 3.9-4.8 mkm gain-switched lasing of Fe: ZnSe at room temperature. Optics Express. 2005;13(26):10608-10612.

Kozlovsky VI, Akimov VA, Frolov MP, Korostelin Yu. V, Landman AI, Martoitsky VP, Mislavskii VV, Podmar’kov Yu P, Sksyrsky Ya K, Voronov AA. «Room-temperature tunable mid-infared lasers on transition-metal doped II-VI compound crystals grown from vapor phase». Physica Status Solidi B. 2010;247(6):1553-1556.

Doroshenko ME, Jelinkova H, Sulc J, Jelinek M, Nemec M, Basiev TT, Zagoruiko YA, Kovalenko NO, Gerasimenko AS, Puzikov VM. Laser properties of Fe:Cr:Zn1-xMgxSe crystal for tunable mid – infrared laser sources. Laser Physics Letters. 2012;9(4):301-305.

Mirov SB, Fedorov VV, Martyshkin DV, Moskalev IS, Mirov MS, Vasilyev SV. Progress in Mid-IR Lasers Based on Cr and Fe-Doped II–VI Chalcogenides. IEEE Journal of Selected Topics in Quantum Electronics. 2015;21:160-171.

Apollonov VV. High power P-P lasers. NOVA; 2014.

Apollonov VV. High power lasers in our life. NOVA; 2016.

Apollonov VV, Kazantsev S. Yu. Self-organization of dissipative structures in gas-discharge plasma of self-initiated volume discharge. Kratkie Soobshcheniya po Fizike. 2019;46(5).

Apollonov VV, Kazantsev S. Yu. High energy ecologically safe lasers. CIC; 2020.

Mesyats GA. et al, High pressure VSSD in the gas. UFN. 1986;148(1):101-122.

Apollonov VV. et al, SSVD discharge formation in the case of big gaps. Letters to JTP. 1985;11(20):1262-1266.