WOUND CURE BY ELECTROMAGNETIC FIELDS

Main Article Content

NIKHIL RASTOGI
VINYAS GOSWAMI
SHALINI GUPTA

Abstract

Low-frequency magnetic fields induce circulating currents within the human body. The strength of these currents depends on the intensity of the outside magnetic field. If sufficiently large, these currents could cause stimulation of nerves and muscles or affect other biological processes. Electromagnetic fields have shown a promising potential for treatment of various injuries. Various methods have been proposed for wound treatment including electric flow treatment, EMF treatment, static attractive field, and joined attractive field. The current review surveys the most current EMF based techniques for wound medicines and think about their effectiveness for each twisted. Furthermore the proposed components of activity of these procedures were audited. Among various strategies, Electric charge flow treatment shows additional promising consequences for wounds. Besides, various boundaries impact the helpful presentation of ET and EMFT including electrical characteristic properties of living organs just as actual boundaries of incitements. For additional advancement of EMF based medicines for wound, it is important to foster more quantitative evaluations for wound recuperating.

Keywords:
Wound treatment, electromagnetic fields, electric charge flow treatment

Article Details

How to Cite
RASTOGI, N., GOSWAMI, V., & GUPTA, S. (2021). WOUND CURE BY ELECTROMAGNETIC FIELDS. Asian Journal of Advances in Research, 11(4), 325-330. Retrieved from http://mbimph.com/index.php/AJOAIR/article/view/2698
Section
Review Article

References

Mattsson MO, Simkó M. Emerging medical applications based on non-ionizing electromagnetic fields from 0 Hz to 10 THz. Med Devices (Auckl). 2019;12:347-368. Published 2019 Sep 12. DOI:10.2147/MDER.S214152.

Sue Jenkins. The assessment of pain in acute wounds. Wounds Asia. 2020;3(2):10-15.

Greaves NS, Iqbal SA, Baguneid M, Bayat. A. The role of skin substitutes in the management of chronic cutaneous wounds. Wound Repair Regen. 2013;21:194–210.

Fonder MA, Lazarus GS, Cowan DA, Aronson-Cook B, Kohli AR, Mamelak AJ. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings. J. Am. Acad. Dermatol. 2008;58:185–206.

Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5(4):167-176. DOI:10.1016/j.jmau.2017.07.003

Sarika Singh, Neeru Kapoor. Hindawi Publishing Corporation Advances in Biology. 2014;Article ID 198609:24. DOI:http://dx.doi.org/10.1155/2014/198609

Varani K, Vincenzi F, Pasquini S, Blo I, Salati S, Cadossi M, Mattei MD. Int. J. Mol. Sci. 2021;22(2):809. DOI:https://doi.org/10.3390/ijms22020809.

Abstracts of the 27th Annual Meeting of the Society of General Internal Medicine. Chicago, Illinois, USA, 12-15 May, 2004. J Gen Intern Med. 2004;19 Suppl 1(Suppl 1):23-260. DOI:10.1111/j.1525-1497.2004.S1002.x.

Murray HB, Pethica BA. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures. Orthop Res Rev. 2016;8:67-72.

Published 2016 Dec 1. DOI:10.2147/ORR.S113756)

Kloth LC. Electrical stimulation technologies for wound healing. Advances in Wound Care. 2014; 3(2):81–90. DOI:https://doi.org/10.1089/wound.2013.0459

Barker AT, Jaffe LF, Vanable JW Jr. Barker AT, et al. Am J Physiol. 1982 Mar; 242(3):R358-66. DOI: 10.1152/ajpregu.1982.242.3.R358.

Markov M. Benefit and hazard of electromagnetic fields: electromagnetic fields in biology and medicine. CRC Press. 2015;2:15-27.

Feily A, Moeineddin F, Mehraban S. Phsicsla modalities in the management of wound (s). Wound Healing-New insights in to Ancient Challenges; 2016.

Sam JE, Robert D. The ecology of electricity and electroreception. Biol. Rev.; 2021. DOI: 10.1111/brv.12804.

Capstick M, Kuster N, Kuehn S, et al. A radio frequency radiation exposure system for rodents based on reverberation chambers. IEEE Trans Electromagn Compat. 2017;59(4):1041-1052. DOI:10.1109/TEMC.2017.2649885.

Kundi M. EMFs and childhood leukemia. Environ Health Perspect. 2007;115(8):A395. DOI:10.1289/ehp.10217.

Arora, Paul et al. Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ : Canadian Medical Association journal, journal de l'Association medicale canadienne. 2013;185,9 : E417-23. DOI:10.1503/cmaj.120833

Kundi, Michael. EMFs and childhood leukemia. Environmental health perspectives. 2007;115(8):A395. DOI:10.1289/ehp.10217.

Kundi M. EMFs and childhood leukemia. Environ Health Perspect. 2007 Aug;115(8):A395. DOI: 10.1289/ehp.10217. PMID: 17687419; PMCID: PMC1940086.

Panigrahi AK, Ray B, Pati M. Evaluation of prescription pattern of antidiabetic drug at vimsar (a tertiary care, hospital), burla. Asian Journal of Advances in Medical Science. 2021;3(4):169-175.

Berbudi, Afiat et al. Type 2 diabetes and its impact on the immune system. Current Diabetes Reviews. 2020;16(5):442-449. DOI:10.2174/1573399815666191024085838

Berbudi A, Rahmadika N, Tjahjadi AI, Ruslami R. Type 2 Diabetes and its Impact on the Immune System. Curr Diabetes Rev. 2020;16(5):442-449. DOI: 10.2174/1573399815666191024085838. PMID: 31657690; PMCID: PMC7475801.

Kao, Fu-Cheng et al. The application of nanogenerators and piezoelectricity in osteogenesis. Science and Technology of Advanced Materials. 2019;20(1):1103-1117. DOI:10.1080/14686996.2019.1693880.

Ahn AC, Grodzinsky AJ. Relevance of collagen piezoelectricity to "Wolff's Law": a critical review. Med Eng Phys. 2009;31(7):733-741. DOI:10.1016/j.medengphy.2009.02.006

Pedrero SG, Llamas-Sillero P, Serrano-López J. A multidisciplinary journey towards bone tissue engineering. Materials. 2021;14(17):4896. DOI:https://doi.org/10.3390/ma14174896

Panigrahi AK, Ray B, Pati M. Evaluation of prescription pattern of antidiabetic drug at vimsar (a tertiary care, hospital), burla. Asian Journal of Advances in Medical Science. 2021;3(4):169-175.