Main Article Content



The predatory efficiency of Nepa cinerea on Aedes albopictus larvae as prey was analysed based on various factors like prey instar and density, space size and vegetation density. The total number of prey intake at prey density number of 2, 4, 8, 16 and 32 was 3.9 ±1.5, 10.6 ±1.5, 21.0 ±1.9, 42.6 ±4.2, and 79.6 ±6.5 respectively. For, space size, the total number of prey intake by the predator at different volumes, viz., 1, 2, 5, 10 and 20L was 41.8 ±1.4, 35.6 ±0.7, 28.8 ±1.4, 22.1 ± 0.7, and 14.0 ±1.0 respectively. While for vegetation density at 1, 2, 3, 4, and 5g, the respective values for total number of prey intake was 39.5 ±1.7, 32.6 ±1.6, 29.5 ±1.1, 24.6 ±0.5, and 20.6 ±0.8. The present investigation gives an essential idea with respect to these factors which play a vital role in the variation of the predation efficiency of predators on their prey which are successful parameters in determination of concrete prey predator relationship.

Nepa cinerea, Aedes albopictus, predatory efficiency, prey instar, prey density, space size, vegetation density

Article Details

How to Cite
MARIN, G., PEARLIN, A., BLESSY, P., GINCY, D., ARIVOLI, S., & TENNYSON, S. (2021). FACTORS INFLUENCING THE PREDATORY EFFICIENCY OF Nepa cinerea LINNAEUS 1758 (HEMIPTERA: NEPIDAE) ON PREY Aedes albopictus SKUSE 1894 (DIPTERA: CULICIDAE). UTTAR PRADESH JOURNAL OF ZOOLOGY, 42(7), 42-48. Retrieved from http://mbimph.com/index.php/UPJOZ/article/view/2046
Original Research Article


Shaalan EAS, Canyon VD. Aquatic insect predators and mosquitoes control. Tropical Biomedicine. 2009;26(3):223-261.

Elumalai K, Arivoli S, Sanakaralingam A. Predatory tactics of egg bearing water bug, Diplonychus indicus Venk. & Rao. Journal of Applied Zoological Researches. 1995;6(1): 13-16.

Venkatesan P, Arivoli S, Elumalai K. Predatory strategy of the water stick insect Ranatra filiformis Fabr. as an adaptation. Environment and Ecology. 1995;13(2):361-365.

Arivoli S, Chandramohan G, Venkatesan P. Influence of abiotic factors on seasonal fluctuation of population of water strider Tenagogonus fluviorum (Fabricius) in a permanent pond. Journal of Nature Conservation. 2005;17(2):363-370.

Chandramohan G, Arivoli S, Venkatesan P. Impact of vegetation on predatory efficiency of Diplonychus rusticus (Fabricius). Journal of Nature Conservation. 2005;17:291-298.

Chandramohan G, Arivoli S, Venkatesan P. Coexistence of predatory water bugs influencing prey distribution. Journal of Entomological Research. 2006;30(3):193-197.

Chandramohan G, Arivoli S, Venkatesan P. Effect of salinity on the predatory performance of Diplonychus rusticus (Fabricius). Journal of Environmental Biology. 2008;29(3):287-290.

Chandramohan G, Arivoli S, Venkatesan P. Effect of quality of water media on the predatory performance of the bug Diplonychus rusticus. Journal of Ecobiology. 2011;28(1): 9-15.

Marin EG. Biology and biodiversity of chosen aquatic insects of Kanyakumari district. Ph.D. Thesis. Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India. 2005.

Arivoli S, Venkatesan P. Functional response of Tenagogonus fluviorum (Fabricius) in its predation of Culex quinquefasciatus Say larvae of varied density and size. Journal of Biological Control. 2006;20(1):19-24.

Fischer S, Schweigmann N. Association of immature mosquitoes and predatory insects in urban rain pools. Journal of Vector Ecology. 2008;33(1):46-55.

Navamani A, Arivoli S, Venkatesan P. Predatory performance of Diplonychus rusticus (Fabr.) in relation to different periods of exposure. Hexapoda. 2009;16(1):47-49.

Marin G, Arivoli S, Samuel T. Biocontrol efficiency of Nepa cinerea Linnaeus 1758 (Hemiptera: Nepidae) against the vectors of dengue and filarial fever. International Journal of Mosquito Research. 2019;6(6):39-42.

Marin G, Arivoli S, Selvalumar S, Reegan D, Samuel T. Predatory efficiency of freshwater bugs Diplonychus indicus Venk. & Rao (Hemiptera: Belostomatidae) and Ranatra filiformis Fabricius (Hemiptera: Nepidae) on the larvae of the dengue vectors Aedes aegypti Linnaeus and Aedes albopictus Skuse (Diptera: Culicidae). Uttar Pradesh Journal of Zoology. 2021;42(1):32-39.

SPSS. IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp. 2010.

Cloarec A. Predatory success in the water stick insect: The role of visual and mechanical stimulations after moulting. Animal Behaviour. 1982;30:549-556.

Zaloam FC, Grigaric AA. Predation by Hydrophilus triangularis and Tropisternus lateralis in California rice fields. Annals of the Entomological Society of America. 1980;73: 167-171.

Dawkins R, Krebs JR. Arm races between and within species. Proceedings of the Royal Society of London B. 1979;205:489-511.

Ferrari MCO, Wisenden BD, Chivers DP. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology. 2010;88:698-724.

Murdoch WW, Oaten A. Predation and population stability. Advances in Ecological Research. 1975;9:1-131.

Oaten A, Murdoch WW. Switching, functional response, and stability in predator-prey systems. American Naturalist. 1975;109:299-318.

Hassell MP, Lawton JH, Beddington JR. The components of arthropod predation: I. The prey death-rate. Journal of Animal Ecology. 1976;45:135-164.

Cock MJW. Assessment of preference. Journal of Animal Ecology. 1978;47:805-816.

Blois C, Cloarec A. Density dependent prey selection in the water stick insect, Ranatra linearis (Heteroptera). Journal of Animal Ecology. 1983;52:849-866.

Singh RK, Singh SP. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions. Journal of Communicable Diseases. 2004;36(2):105- 110.

Ghosh A, Chandra G. Functional response of Laccotrephes griseus (Hemiptera: Nepidae) against Culex quinquefasciatus (Diptera: Culicidae) in laboratory bioassay. Journal of Vector Borne Diseases. 2011;48:72-77.

Murdoch WW. Switching in general predators: experiments on predator specificity and stability of prey population. Ecological Monographs. 1969;39:335-354.

Peckarsky BL. Aquatic insect predator-prey relations. Bioscience. 1982;32:261-266.

Curio E. The ethology of predation. Springer Verlag: Berlin. Heidelberg, New York. 1976, 250.

McArdle BH, Lawton JH. Effects of prey-size and predator-instar on the predation of Daphnia by Notonecta. Ecological Entomology. 1979;4:267-275.

Wilson DS. The adequacy of body size as a niche difference. American Naturalist. 1975;109:769-784.

Vanitha E. Studies on the predatory potential of the water bug Diplonychus rusticus Fabr. (= indicus Venk. And Rao) (Hemiptera: Belostomatidae) Ph.D. Thesis, University of Madras, Chennai, Tamil Nadu, India. 1999.

Cogni R, Freitas AVL, Filho BFA. Influence of prey size on predation success by Zelus longipes L. (Het., Reduviidae). Journal of Applied Entomology. 2000;126(2-3):74-78.

Runck C, Blinn DW. Population dynamics and secondary production by Ranatra montezuma (Heteroptera:Nepidae). Journal of the North American Benthological Society. 1990;9(3): 262-270.

Roy JK, Raut SK. Factor influencing predation of the water bugs Sphaerodema annulatum (Fab.) and Sphaerodema rusticum (Fab.) on the disease transmitting snail Lymnaea (Radix) luteola (Lamark). Memórias do Instituto Oswaldo Cruz. 1994;89(1):11-20.

Sana N, Aditya G, Bal A, Saha GK. Influence of light and habitat on predation of Culex quinquefasciatus (Diptera: Culicidae) larvae by the waterbugs (Hemiptera: Heteroptera). Insect Science. 2008;15:461-469.

Sankaralingam A. Dynamics of predation and reproduction in the aquatic insect Diplonychus indicus Venk. & Rao. Ph.D. Thesis, University of Madras, Chennai, Tamil Nadu, India. 1990.

Marin EG, Kumar SP. Influence of vegetation on the predatory performance of Diplonychus indicus. Journal of Entomological Research. 2003;27:1-4.

Cloarec A. Variation of foraging tactics in a water bug, Diplonychus indicus. Journal of Ethology. 1989;7:27-34.

Saha N, Aditya G, Bal A, Saha GK. A comparative study of predation of three aquatic heteropteran bugs on Culex quinquefasciatus larvae. Limnology. 2007;8(1):73-80.

Ohba S. Ecology of giant water bugs (Hemiptera: Heteroptera: Belostomatidae). Entomological Science. 2019;22(1):6-20.

Most read articles by the same author(s)