EFFECTS OF GREEN NANOPARTICLES ON THE PATHOGENIC FUNGI OF SILKWORM: A REVIEW

Main Article Content

KHUSHBOO PANDEY
https://orcid.org/0000-0003-4957-2766
NEETU KACHHWAHA

Abstract

One of the beneficial insects, silkworm (Bombyx mori): produces abundant silk in the form of a cocoon by ingesting mulberry leaves (Morus alba) in the course of the larval period. Factors such as humidity and temperature affect the physiology of insects. The farmers are also facing a huge problem because of the susceptibility of silkworms to different kinds of diseases which are causing alarming effects on their cocoon production.  This paper is to discuss the control of entomopathogenic fungi by using various green nanoparticles (NPs) and see their effects on the larval growth, survivability, and mass production of silk. This paper discusses previous studies on the correlation between the environmental factors, green NPs, and the changes in the developmental cycle of silkworms. Environmental factors like temperature, humidity is also essential for the higher productivity of silk in sericulture. But due to these pathogenic fungi and the inadequate environmental conditions, immense economic losses occur in the sericulture industries.

Keywords:
Entomopathogenic fungal infection, green nanotechnology, environmental factors, silkworm rearing

Article Details

How to Cite
PANDEY, K., & KACHHWAHA, N. (2021). EFFECTS OF GREEN NANOPARTICLES ON THE PATHOGENIC FUNGI OF SILKWORM: A REVIEW. UTTAR PRADESH JOURNAL OF ZOOLOGY, 42(21), 28-38. Retrieved from http://mbimph.com/index.php/UPJOZ/article/view/2528
Section
Review Article

References

Ping KG, Xi JG. Overview of silkworm pathology in China. African Journal of Biotechnology. 2011; 10(79):18046-18056. DOI:https://doi.org/10.5897/AJB10.2633

Feng L, Shimin S, Xianjuan Q.. China-Indian silk trade: Current production and future prospects. Chinese Journal of Population, Resources, and Environment. 2009;7(2):91–6.

Kumar KPK, Sinha AK, Singh GP, Madhusudhan KN. Efficacy of systemic fungicides for control of white muscardine in tasar silkworm, Antheraea mylitta D. Research Journal of Microbiology. 2011; 6(11):805-812. DOI:http://doi.org/10.3923/jm.2011.805.812

Rajagopal V, Ramesh HL, Murthy VNY, Ninge GKN. Efficacy of fungicide 'Kavach' against Beauveria bassiana L. in silkworm. Journal of Applied and Natural Science. 2014;6:31-37. DOI:https://doi.org/10.31018/jans.v6i1.371

Bizhannia A, Etebari K, Matindoost L. Bio-economic changes due to long-time treatment of Carbendazim on mulberry Silkworm (Bombyx mori L.). Caspian Journal of Environmental Sciences. 2005;3(1):23-27.

Verma A, Gautam SP, Bansal KK, Prabhakar N, Rosenholm JM. Green nanotechnology: Advancement in phyto formulation research. Medicines. 2019;6(1):39. DOI:https://doi.org/10.3390/medicines6010039

Panthee S, Paudel A, Hamamoto H, Sekimizu K. Advantages of the silkworm as an animal model for developing novel antimicrobial agents. Front Microbiol. 2017;7(8):373. DOI:https://doi.org/10.3389/fmicb.2017.00373

Bhattacharya P, Jha S, Mandal P, Ghosh A. Artificial diet based silkworm rearing system-a Review. International Journal of Pure and Applied Bioscience. 2016;4(6):114-122. DOI:http://dx.doi.org/10.18782/2320-7051.2402

Moise AR, Pop LL, Vezeteu TV, Agoston BD, Pasca C, Dezmirean DS. Artificial diet of silkworms (Bombyx mori) improved with bee pollen - biotechnological approach in the global center of excellence for advanced research in sericulture and promotion of silk production. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies. 2020;77:51. DOI:https//doi.org/10.15835/buasvmcn-asb:0004.20.

Rajaram S, Qadri SMH, Bindroo BB, Radhakrishnan S, Reddy PM, Prokash MRS. Efficacy of artificial diet on growth and cocoon characters of silkworm (Bombyx mori) PM×CSR2 crossbreed. Journal of Bioindustrial Science. 2012;1:1-15.

Kamate GS, Lande UL, Mupade RV. Effect of different mulberry varieties on the rearing of silkworm Bombyx mori L. in Maharashtra. International Journal of Plant Protection. 2010;3(2):210-212.

Gurjar TS, Siddhapara MR, Patel AH. Rearing performance of various races of mulberry, Bombyx mori L. International Journal of Agriculture Sciences. 2018;10(13):6625-6627.

Dong HL, Zhang SX, Tao H, Chen ZH, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Scientific Reports. 2017;7:10972. DOI:https://doi.org/10.1038/s41598-017-11592-4

Krishnaswami S. New technology of silkworm rearing. Central sericulture research and training institute, Mysore. Bulletin-2; 1978.

Rahmathulla VK. Management of climatic factors for successful silkworm (Bombyx mori l.) crop and higher silk production: a review. Psyche: A Journal of Entomology. 2012;1-12. DOI:https://doi.org/10.1155/2012/121234

Sarkar K. Studies on the effect of different types of feeding on the commercial characters of mulberry silkworm (Bombyx mori L.) in West Bengal: A review. International Journal of Agriculture Environment and Biotechnology. 2020;13(3):305–321.

Boskovic L, Agranovski IE. Removal of Fine Particles on Fibrous Filters. Environment Nanotechnology. 2010;245-257. DOI:https://doi.org/10.1016/B978-0-08-054820-3.00013-7

Ebrahiminezhad A, Zare-Hoseinabadi A, Sarmah AK, Taghizadeh S, Ghasemi Y, Berenjian A. Plant-Mediated synthesis and applications of iron nanoparticles. Molecular Biotechnology. 2018;60:154–168. DOI:https://doi.org/10.1007/s12033-017-0053-4

Gouda S, Patra JK, Kerry RG, Das G. Synthesis of nanoparticles utilizing sources from the mangrove environment and their potential applications: An overview. Nanomaterials in Plants, Algae, and Microorganisms. Concepts and Controversies. 2019;2:219-235. Ch-11 Publisher: Elsevier Inc DOI:https://doi.org/10.1016/B978-0-12-811488-9.00011-1

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology. 2018; 16(1):84. DOI:https://doi.org/10.1186/s12951-018-0408-4

Gour A, Jain NK. Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):844-851. DOI:http://doi.org/10.1080/21691401.2019.1577878

Gericke M, Pinches A. Microbial production of gold nanoparticles. Journal of Gold Science, Technology and Applications. 2006;39(1):22–28. DOI:https://doi.org/10.1007/BF03215529

Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology progress. 2009;25(5):1260–1266. DOI:https://doi.org/10.1002/btpr.199

Husseiny SM, Salah TA, Anter HA. Biosynthesis of size-controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumoral activities. Beni-Suef University Journal of Basic and Applied Sciences. 2015;4:225–31. DOI:http://doi: 10.1016/j.bjbas.2015.07.004

Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research. 2008;10(3):507–517. DOI:https://doi.org/10.1007/s11051-007-9275-x

Narayanan KB, Sakthivel N. Synthesis and characterization of nano-gold composite using Cylindrocladiumfloridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. Journal of Hazardous Materials. 2011;189(1-2):519–525. DOI:https://doi.org/10.1016/j.jhazmat.2011.02.069

Yurkov AM, Kemler M, Begerow D. Species accumulation curves and incidence-based species richness estimators to appraise the diversity of cultivable yeasts from beech forest Soils. Public Library of Science One. 2011;6(8). DOI:https://doi.org/10.1371/journal.pone.0023671

Sharma G, Pandey S, Ghatak S, Watal G, Rai PK. Potential of spectroscopic techniques in the characterization of “Green Nanomaterials”. Nanomaterials in Plants, Algae, and Microorganisms Concepts and Controversies. 2018;1(Ch-3):59-77. DOI:https://doi.org/10.1016/B978-0-12-811487-2.00003-7

Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun YS. Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chemical Engineering Journal. 2010;162(3):989–96. DOI:https://doi.org/10.1016/j.cej.2010.07.006

Marchiol L. Synthesis of metal nanoparticles in living plants. Italian Journal of Agronomy. 2012; 7(3):e37. DOI:https://doi.org/10.4081/ija.2012.e37

Anastas P, Eghbali N. Green chemistry: principles and practice. Chemical Society Reviews. 2010;39: 301-312. DOI:https://doi.org/10.1039/B918763B

Vidya C, Hirematha S, Chandraprabha MN, Antonyraj MAL, Gopal IV, Jain A, Bansal K. Green synthesis of ZnO nanoparticles by Calotropis gigantea. International Journal of Current Engineering and Technology. 2013;1:118-120. DOI:https://doi.org/10.1007/s13204-017-0586-7

Devi HS, Singh TD. Synthesis of copper oxide nanoparticles by a novel method and its application in the degradation of methyl orange. Advance in Electronic and Electric Engineering. 2014;4(1):83–88.

Gnanasangeetha D, Thambavani SD. Biogenic production of zinc oxide nanoparticles using Acalypha indica. Journal of Chemical, Biological, and Physical Sciences. 2014;4:238–46.

Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S. Indium oxide (In₂O₃) nanoparticles using aloe vera plant extract: synthesis and optical properties. Journal of Optoelectronics Advanced Materials. 2008;2(3):161-165.

Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science. Materials International. 2012;22(6):693–700. DOI:https://doi.org/10.1016/j.pnsc.2012.11.015

Levard C, Hotze EM, Lowry GV, Brown GE, Jr. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environmental Science and Technology. 2012;46(13):6900–6914. DOI:https://doi.org/10.1021/es2037405

Mourdikoudis S, Pallares RM, Thanh NTK. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Journal of Nanoscale. 2018;10:12871-12934. DOI:https://doi.org/10.1039/C8NR02278J

Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Prasad R. Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir: the ACS Journal of Surfaces and Colloids. 2015;31(42):11605–11612. DOI:https://doi.org/10.1021/acs.langmuir.5b03081

Tomaszewska E, Soliwoda K, Kadziola K, Celichowski G, Cichomski M, Szmaja W, Grobelny J. Detection limits of DLS and UV-Vis spectroscopy in the This paper aims characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials. 2013;10. DOI:https://doi.org/10.1155/2013/313081

Subhapriya S, Gomathi P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microbial Pathogenesis. 2018;116:215–220. DOI:https://doi.org/10.1016/j.micpath.2018.01.027

Singer A, Mohapatra S.S, Mohapatra S, Barakat Z. nanoscale drug-delivery systems: in vitro and in vivo characterization. Nano-carriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery. 2019;Ch.13:395-419. DOI:https://doi.org/10.1016/B978-0-12-814033-8.00013-8

Gupta Dr, Trivedi P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. Lipid Nanocarriers for Drug Targeting. 2018; ch.15:563-627. DOI:https://doi.org/10.1016/B978-0-12-813687-4.00015-3

Titus D, Samuel EJ, J, Roopan SM. Nanoparticle characterization techniques. In: Shukla AK, Iravani S, editors. Green synthesis, characterization and applications of nanoparticles. Elsevier. 2019;303–19. DOI:https://doi.org/10.1016/B978-0-08-102579-6.00012-5

Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. Journal of Nanostructure in Chemistry. 2008;8(4):369–391. DOI:https://doi.org/10.1007/s40097-018-0285-2

Anitha R. Indian silk industry in the global scenario. International Journal of Multidisciplinary Management Studies. 2011;1(3).

Saad MSI, Elyamani EMY, Helaly WMM. Controlling of bacterial and fungal diseases contaminating mulberry silkworm, Bombyx mori by using some plant extracts. Bulletin of the National Research Centre. 2019;43:172. DOI:https://doi.org/10.1186/s42269-019-0218-3

Ribeiro LDFC, Tavares J, Silva SAV, Alvez LFA, Loth EA, Brancalhão RMC. Infection of silkworm larvae by the entomopathogenic fungus Metarhiziumanisopliae. Ciência Rural. 2017;47(4):e20151485. DOI:https://doi.org/10.1590/0103-8478cr20151485

Kumar S, Ravindra MA, Ramya MN. Aflatoxin: A higher threat of health hazards for the bivoltine silkworms in temperate zones- A review. International Journal of Current Microbiology and Applied Sciences. 2019;8 (01):3144–53. DOI:https://doi.org/10.20546/ijcmas.2019.801.336

Foley K, Fazio G, Jensen AB, Hughes WOH. The distribution of Aspergillus spp. opportunistic parasites in hives and their pathogenicity to honey bees. Veterinary Microbiology. 2014;169(3–4):203–10. DOI:https://doi.org/10.1016/j.vetmic.2013.11.029

Reddy HA. Effect of Aspergillus fumigatus infection on the silk gland Bombyx mori L. International Journal of Recent Scientific Research. 2017;8(11):21731-21733. DOI:http://dx.doi.org/10.24327/ijrsr.2017.0811.1129

Kumar V, Singh G, Babu A. Surface ultrastructural studies on the germination, penetration and conidial development of Aspergillus Flavus Link: Fries Infecting Silkworm, Bombyx Mori Linn. Mycopathologia. 2004;157:127–135. DOI:https://doi.org/10.1023/B:MYCO.0000012225.79969.29

Shobha R, Reddy A, Venkatappa B. Catalase activity in the aims characterization hemolymph of silkworm (Bombyx mori L.) following fungal infection. Journal of Biology and Nature. 2016;5(3):148-153. Available:https://www.ikprress.org/index.php/JOBAN/article/view/1091

Kumar V. The scanning electron microscopic study of the infection and conidial development of Aspergillus tamarii Kita on its host, the silkworm, Bombyx mori Linn. Central European Journal of Biology. 2007;2:574–587. DOI:https://doi.org/10.2478/s11535-007-0036-8

Kawakami K. Culture of Aspergillus on a selective medium. Scmshi-Kenkyu (Acta Sericologica). 1967;64:52- 61.

Kawakami K. Causal pathogens of Aspergillus disease of silkworm and its control. Yatabe, Ibaraki, 305 Japan; Japan Agricultural Research Quarterly. 1981;15(3):185-190.

Glaser RW. The green muscardine disease in silkworms and its control. Annals of the Entomological Society of America. 1926;19(2):180-192. DOI:https://doi.org/10.1093/aesa/19.2.180

Woessner JF. MetarhiziumAnisopliae Carboxypeptidase MeCPA. In Handbook of Proteolytic Enzymes Ch.297, (Third Edition). 2013;1:1329-1331. DOI:https://doi.org/10.1016/B978-0-12-382219-2.00298-2

Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Wang C. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhiziumanisopliaeand M. acridum. Public Library of Science Genetics. 2011; 7(1). DOI:https://doi.org/10.1371/journal.pgen.1001264

Blumberg BJ, Short SM, Dimopoulos G. Employing the mosquito microflora for disease control. In: Adelman ZN, editor. Genetic Control of Malaria and Dengue. San Diego, CA: Elsevier. 2016;335–62. DOI:https://doi.org/10.1016/B978-0-12-800246-9.00015-6

Benjamin JB, Sarah MS, George D. Employing the mosquito microflora for disease control. Genetic Control of Malaria and Dengue. 2016;335-362. DI:https://doi.org/10.1016/B978-0-12-800246-9.00015-6

Amaresan N, Kumar MS, Annapurna K, Kumar K, Sankaranarayanan A. Editors. Beneficial microbes in Agroecology: Bacteria and fungi. San Diego, CA: Academic Press; 2020.

Bk V, Kd S, Mg P, Sp S. The influence of infection of Beauveria bassiana (Bals) Vuill, a fungal species (Family: Clavicipitaceae) on quality of the cocoons of spinned by the larval instars of Bombyx mori (L) (Race: PMx CSR2. Journal of Bacteriology & Mycology. 2019;7(1):14-18.

Meyling NV, Lübeck M, Buckley EP, Eilenberg J, Rehner SA. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and semi-natural habitats. Molecular Ecology. 2009;18(6):1282–1293. DOI:https://doi.org/10.1111/j.1365-294X.2009.04095.x

Andrew LR. Microbial pest control agents: Use patterns, registration requirements, and mammalian toxicity. Academic Press, Hayes’ Handbook of Pesticide Toxicology (Third Edition). 2010;Ch-3:441-461. DOI:https://doi.org/10.1016/B978-0-12-374367-1.00013-6

Shanmugam V, Seethapathy P. Isolation and characterization of white muscardine fungi Beauveria bassiana (Bals.) Vuill. - A causative of the mulberry silkworm. Journal of Entomology and Zoology Studies. 2017;5(3):512-515.

Dannon HF, Dannon AE, Douro-Kpindou OK, Zinsou AV, Houndete AT, Toffa-Mehinto J, Olou BD. Toward the efficient use of Beauveria bassiana in integrated cotton insect pest management. The Journal of Cotton Research. 2020;3:24. DOI:https://doi.org/10.1186/s42397-020-00061-5

Jame RR, Zengzhi Li. From silkworms to bees: Diseases of beneficial insects. Insect Pathology. 2nd Ed. Elsevier, New York. 2012;429-459.

Moonjely S, Bidochka MJ, Barelli L. Insect Pathogenic Fungi as Endophytes: Conidiation on the Surface of the Insect Cadaver. Advances in Genetics. 2016;Ch.4:94:107-135. DOI:https://doi.org/10.1016/bs.adgen.2015.12.004

Govindan R, Narayanswami TK, Devaiah MC. Principles of silkworm pathology. 1st Ed. Seri Scientific Publishers. 1998;1-420.

Isaiarasu L, Sakthive lN, Ravikumar J, Samuthiravelu P. Effect of herbal extracts on the microbial pathogens causing flacherie and muscardine diseases in the mulberry silkworm, Bombyx mori L. Journal of Biopesticides. 2011;4(2):150-155.

Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. International Journal of Antimicrobial Agents. 2004;23(1):575–578. DOI:https://doi.org/10.1016/j.ijantimicag.2003.12.004

Ramamoorthy R, Vanitha S, Paladugu K. Green synthesis of silver nanoparticles using red seaweed Portieriahornemannii (Lyngbye) P.C. silva and its antifungal activity against silkworm (Bombyx mori L.) Muscardine pathogens. Journal of Pharmacognosy and Phytochemistry. 2019;8(3):3394-3398.

Ahmad T, Wani IA, Manzoor N, Ahmed J, Asiri AM. Biosynthesis, structural characterization, and antimicrobial activity of gold and silver nanoparticles. Colloids and Surfaces. B: Biointerfaces. 2013; 107:227–234. DOI:https://doi.org/10.1016/j.colsurfb.2013.02.004

Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology. 2008;18(8):1482–1484.

Joncy M, Dharshini P. Botanicals for the management of silkworm diseases. Journal of International Academic Research for Multidisciplinary. 2018;6(3). ISSN: 2320-5083.

Khan I, Saeed KI. Nanoparticles: Properties, applications, and toxicities. Arabian Journal of Chemistry. 2019;12(7):908–31. DOI:https://doi.org/10.1016/j.arabjc.2017.05.011

Patil R, Naika H, Rayar S, Balashanmugam N, Uppar V, Bhattacharyya A. Green synthesis of gold nanoparticles: its effect on cocoon and silk traits of mulberry silkworm (Bombyx mori L.). Particulate Science and Technology. 2016;35(3):291-297. DOI:https://doi.org/10.1080/02726351.2016.1154121

Li Y, Ni M, Li F, Zhang H, Xu K, Zhao X, Tian J, Hu J, Wang B, Shen W, Li B. Effects of TiO2 NPs on Silkworm Growth and Feed Efficiency. Biological Trace Element Research. 2016;169(2):382–386. DOI:https://doi.org/10.1007/s12011-015-0413-5

Pandiarajan J, Jeyarani V, Balaji SM, Krishnan M. Silver nanoparticles an accumulative hazard in silkworm: Bombyx mori. Austin Journal of Biotechnology and Bioengineering. 2016;3(1):1057.

Meng X, Abdlli N, Wang N, Lü P, Nie Z, Dong X, Lu S, Chen K. Effects of Ag nanoparticles on growth and fat body proteins in silkworms (Bombyx mori). Biological Trace Element Research. 2017; 180(2):327–337. DOI:https://doi.org/10.1007/s12011-017-1001-7

Jaculine S, Palavesam A, Padmalatha C. Green synthesized silver nanoparticles and growth changes in the larvae of the mulberry silkworm Bombyx mori. International Journal of Current Advanced Research. 2017;6(8):5431-5435. DOI:http://doi.org/10.24327/ijcar.2017.5435.0723

Wu GH, Song P, Zhang DY, Liu ZY, Li L, Huang HM, Zhao HP, Wang NN, Zhu YQ. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. International Journal of Biological Macromolecules. 2017;104 (pt-A):533– 538. DOI:https://doi.org/10.1016/j.ijbiomac.2017.06.069

Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Kumar PVA, Alam M, Kumar R, Sastry M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. American Chemical Society. 2001;1(10):515–519. DOI:https://doi.org/10.1021/nl0155274

Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK. The exploitation of Aspergillus niger for the synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy. 2008;243-247(5). DOI:https://doi.org/10.1166/jbmb.2008.401

Chen JC, Lin ZH, Ma XX. Evidence of the production of silver nanoparticles via pretreatment of Phomasp.3.2883 with silver nitrate. Letters in Applied Microbiology. 2003;37(2):105–108. DOI:https://doi.org/10.1046/j.1472-765X.2003.01348.x

Bhainsa KC, D'Souza SF.. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces. B, Biointerfaces. 2006;47(2):160–164. DOI:https://doi.org/10.1016/j.colsurfb.2005.11.026

Vigneswaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Materials Letters Green and Sustainable Chemistry. 2007;61(6):1413-1418. DOI:https://doi.org/10.1016/j.matlet.2006.07.042

Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces. 2003;28: 313-318. DOI:https://doi.org/10.1016/S0927-7765(02)00174-1

Basavaraj S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin. 2008;43(5):1164-1170. DOI:https://doi.org/10.1016/j.materresbull.2007.06.020

Ingle A, Rai M, Gade A, Bawaskar M. Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. Journal of Nanoparticle Research. 2008;11(8):2079-2085. DOI:https://doi.org/10.1007/s11051-008-9573-y

Sanghi R, Verma P. Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresource Technology. 2009;100(1):501–504. DOI:https://doi.org/10.1016/j.biortech.2008.05.048

Li KL, Zhang YH, Xing R, Zhou YF, Chen XD, Wang H, Song B, Sima YH, He Y, Xu SQ. Different toxicity of cadmium telluride, silicon, and carbon nanomaterials against hemocytes in silkworm, Bombyx mori. Royal Society of Chemistry. 2017;7(79):50317–50327. DOI:https://doi.org/10.1039/C7RA09622D