Main Article Content



Cancer is the one of the deadly menace diseases with high medical significance which remains one of the keys that causes ailments and death, the security and firmness of the typical chemotherapeutics drugs and artificial agents used to accomplish cancer are doubtful now a days. These mediators affect the quality of life or sometimes they causative for progress of drug resistance and are not judicious to the majority of the patients So the clinical management of the cancer with high efficiency can done with the probiotic microbiota. An imbalance in the gut microbiota promotes the progress of carcinogenesis through several mechanisms, including inflammation, initiation of carcinogens, and tumorigenic pathways as well. In vivo and molecular studies have exhibited the support to role of probiotics in cancer. Probiotic agents are live microbes or components of microbes that have a positive effect on the host. They exert their action through interaction with the immune system of the host. Some of this effect is localized and some is in improvement in total body system. The Probiotic bacteria are the live microorganisms that, when directed in acceptable amounts, deliberate a healthy benefit on the host, and they have been considered for their protective anti-tumour effects. This review emphases on the role of probiotic microbiota as substitute for the prevention and treatment of cancer in the relation between gut microbiota and the progress of cancer.

Cancer, probiotics, immune system, immunobiotics, health benefits

Article Details

How to Cite
LOKESH, P., PAVITHRA, N., NEELA, K. M., RAJAN, J. A. P., & ARSHAN, M. L. M. K. (2021). INVESTIGATION ON THE EFFECTIVENESS OF PROBIOTIC MICROBIOTA ON CANCER. Asian Journal of Advances in Medical Science, 3(4), 1-31. Retrieved from
Review Article


Ryan RM, Green J, Lewis CE. Use of bacteria in anti-cancer therapies. Bioessays. 2010;28(1):84–94

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 2015; 136:E359 E386.

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, M. Rebelo DM, Parkin D. Forman, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015; 136:E359–E386.

Wronkowski Z, Bruz˙ewicz, S. Malignant neoplasms of the large intestine. General information. In Colorectal Cancer; PZWL Medical Publisher: Warsaw, Poland. 2008; 5–40. ISBN 978-83-200-3333-5.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006; 444:1022-3.

Serban DE. Gastrointestinal cancers: influence of gut microbiota, probiotics and prebiotics. Cancer Letters. 2014; 345:258-270.

Y. Nazir, S.A. Hussain, A. Abdul Hamid, Y. Song, Probiotics and their potential preventive and therapeutic role for cancer, High serum cholesterol, and allergic and HIV diseases, Biomed Res. Int. 2018;2018;1–17.

Singh B, Gautam SK, Verma V, et al. Metagenomics in animal gastrointestinal tract: potential biotechnological applications. Anaerobe. 2008; 14:138–144.

De Roos N, Katan M. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 2000; 71:405–411.

McFarland L. A review of the evidence of health claims for biotherapeutic agents. Microb. Ecol. Health Dis. 2000; 12:65– 76.

Sanders ME. Effect of consumption of lactic cultures on human health. Adv. Fd Nutr. Research. 1993;37:67-130

Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 1989; 66:365-378.

Clancy R. Immunobiotics and the probiotic evolution. FEMS Immunol Med Microbiol. 2003; 38(1):9–12.

Hughes E, McCracken M, Roberts H, Mokdad AH, Valluru B, Goodson R, Dunn E, Elam-Evans L, Giles W. & Jiles R; 2004.

Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 1995; 125:1401e12.

Bongaerts GPA, Severijnen RSVM. A reassessment of the PROPATRIA study and its implications for probiotic therapy. Nature Biotechnol. 2016; 34:55e63.

Patel RM, Denning PW. Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? Clin Perinatol. 2013; 40:11e25.

Ooi MF, Mazlan N, Foo HL, Loh TC, Mohamad R, Rahim RA, et al. Effects of carbon and nitrogen sources on bacteriocin- inhibitory activity of postbiotic metabolites produced by Lactobacillus plantarum I-UL4. Malays J Microbiol. 2015; 11:176e84.

Giorgetti GM, Brandimarte G, Fabiocchi F, Ricci S, Flamini P, Sandri G, et al. Interactions between innate immunity, microbiota, and probiotics. J Immunol Res. 2015; 501361.

Cicenia A, Scirocco A, Carabotti M, Pallotta L, Marignani M, Severi C. Postbiotic activities of lactobacilli-derived factors. J Clin Gastroenterol. 2014; 48:S18e22.

Thomas LV. Probiotics-the journey continues. Int J Dairy Tech 2016; 69:1e12. Postbiotics.

Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016; 37:1e13.b.

Pena AS. Intestinal flora, probiotics, prebiotics, synbiotics and novel foods. Rev Esp Enferm Dig. 2007; 99:653e8.

Pokusaeva K, Fitzgerald GF, Sinderen D. Carbohydrate metabolism in bifidobacteria. Genes Nutr. 2011; 6:285e306.

Tufarelli V, Laudadio V. An overview on the functional food concept: prospectives and applied researches in probiotics, prebiotics and synbiotics. J Exp Biol Agric Sci. 2016;4: 274e8.

Dixit Y, Wagle A, Vakil B. Patents in the field of probiotics, prebiotics, synbiotics: a review. J Food Microbiol Saf Hygiene. 2016; 1:1e13.

Nguyen H-T, Truong D-H, Kouhounde S, Ly S, Razafindralambo H, Delvigne F. Biochemical engineering approaches for increasing viability and functionality of probiotic bacteria. Int J Mol Sci. 2016; 17:1e18.

Eid R, Jakee JE, Rashidy A, Asfour H, Omara S, Kandil MM, et al. Potential antimicrobial activities of probiotic Lactobacillus strains isolated from raw milk. J Probiotics Health. 2016; 4:1e8.

Onyenweaku F, Obeagu EI, Ifediora AC, Nwandikor UU. Health benefits of probiotics. Int J Innov Appl Res. 2016; 4:21e30.

Sornplang P, Piyadeatsoontorn S. Probiotic isolates from unconventional sources: a review. J Anim Sci Tech 2016; 58:1e11.

Arora T, Singh S, Sharma RK. Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition. 2013; 29:591e6.

Westermann C, Gleinser M, Corr SC, Riedel CU. A critical evaluation of Bifidobacterial adhesion to the host tissue. Front Microbiol. 2016; 7:1e8.

Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, et al. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab. 2016; 13:1e13.

Chen X, Yang G, Song J-H, Xu H, Li D, Goldsmith J, et al. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation. PLoS One. 2013; 8:1e7.

Watson AK, Kaspar H, Josie Lategan M, Gibson L. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture. 2008; 274:1–14.

Charalampopoulos D, Rastall RA. (Eds.), Prebiotics and probiotics science and technology. Springer Science. 2009; 596-610.

Espinoza YR, Navarro YG. Non-dairy probiotic products. Food Microbiology. 2010;27:1–11.

Leuschner RGK, Robinson TP, Hugas M, Cocconcelli PS, Richard-Forget F, Klein G, Licht TR, et al. Qualified presumption of safety (QPS): A generic risk assessment approach for biological agents notified to the European Food Safety Authority (EFSA). Trends in Food Science and Technology. 2010; 21(9):425–435.

Ishibashi N, Yamazaki S. Probiotics and safety. The American Journal of Clinical Nutrition. 2001; 73(2): 465–470.

Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology. 2000; 78(1):80–88.

Mortazavian AM, Mohammadi R, Sohrabvandi S. Delivery of probiotic microorganisms into gastrointestinal tract by food products. In T Brzozowski (ed.). New Advances in the Basic and Clinical Gastroenterology. Rijeka, Croatia: InTech; 2012.

Ouwehand AC, Salminen S. In vitro adhesion assays for probiotics and their in vivo relevance: A review. Microbial Ecology in Health and Disease. 2003; 15(4):175– 184.

Libudzisz Z. Microflora of the human digestive tract and its on the body. In Microorganisms in Food and Nutrition]; Gaw˛ecki, J, Libudzisz, Z, Eds, Publisher of the University of Life Sciences: Poznan, Poland. 2016; 31–40.

ISBN 978-83-7160-776-9.

Niederreiter L, Adolph TE, Tilg H. Food, microbiome and colorectal cancer. Dig. Liver Dis. 2018; 50:647–652.

Kim Y, Lee D, Kim D, et al. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res. 2008; 31:468–473.

Thirabunyanon M, Boonprasom P, Niamsup P. Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett. 2009; 31:571–576.

Altonsy MO, Andrews SC, Tuohy KM. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 2010; 137:190–203.

Orlando A, Refolo MG, Messa C, et al. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC- 27 gastric and DLD-1 colon cell lines. Nutr Cancer. 2012;64:1103– 1111.

Thirabunyanon M, Hongwittayakorn P. Potential probioticlactic acid bacteria of human origin induce antiproliferation of colon cancer cells via synergic actions in adhesion to cancer cells and short-chain fatty acid bioproduction. Appl Biochem Biotechnol. 2013; 169:511–525.

Sadeghi-Aliabadi H, Mohammadi F, Fazeli H, Mirlohi M. Effects of Lactobacillus plantarum A7 with probiotic potential on colon cancer and normal cells proliferation in comparison with a commercial strain. Iran J Basic Med Sci. 2014; 17:815–819.

Chen Z-F, Ai L-Y, Wang J-L. Probiotics Clostridium butyricum and Bacillus subtilis ameliorate intestinal tumorigenesis. Future Microbiol. 2015; 10:1433–1445.

Lee NK, Son SH, Jeon EB et al. The prophylactic effect of probiotic Bacillus polyfermenticus KU3 against cancer cells. J Funct Foods. 2015; 14:513–518.

Han KJ, Lee NK, Park H, Paik HD. Anticancer and anti-inflammatory activity of probiotic Lactococcus lactis nk34. J Microbiol Biotechnol. 2015; 25:1697–1701.

Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS ONE; 2016.

Saxami G, Karapetsas A, Lamprianidou E, et al. Two potential probiotic lactobacillus strains isolated from olive microbiota exhibit adhesion and anti-proliferative effects in cancer cell lines. J Funct Foods. 2016; 24:461–471.

Rangel-Colmenero BR, Gomez-Gutierrez JG, Villatoro-Hernández J. et al. Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L. lactis expressing HPV- 16 E7. Viral Immunol. 2014; 27:463–467.

Cortes-Perez NG, Bermúdez-Humarán LG, Le Loir Y, et al. Mice immunization with live lactococci displaying a surface anchored HPV-16 E7 oncoprotein. FEMS Microbiol Lett. 2003; 229:37–42.

del Carmen S, de LeBlanc ADM, Levit R, et al. Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol. 2017; 42:122–129.

Steidler L, Hans W, Schotte L et al. Treatment of murinecolitis by Lactococcus lactis secreting interleukin-10. Science. 2000; 289:1352–1355.

LeBlanc ADM, LeBlanc JG, Perdigón G, et al. Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. J Med Microbiol. 2008; 57:100–105.

Wei C, Xun AY, Wei XX et al. Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol Cancer Res Treat. 2015; 15:498–508.

Li W, Li C-B. Effect of oral Lactococcus lactis containing endostatin on 1, 2-dimethylhydrazine-induced colon tumor in rats. World J Gastroenterol. 2005; 11:7242–7247.

Fu G-F, Li X, Hou Y-Y et al. Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther. 2005; 12:133–140.

Yi C, Huang Y, Guo Z, Wang S (2005) Antitumor effect of cytosine deaminase/5-fluorocytosine suicide gene therapy system mediated by Bifidobacterium infantis on melanoma. Acta Pharmacol Sin 26:629–634.

Wang C, Ma Y, Hu Q et al. Bifidobacterial recombinant thymidine kinase-ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. BMC Cancer. 2016; 16:545.

Guarner F, Malagelada JR. Gut Flora in health and disease. Le Lancet. 2003; 361(9356):512–519.

Burns AJ, Rowland IR. Anti-carcinogenicity of probiotics and prebiotics. Curr. Issues Intest. Microbiol. 2000; 1:13-24.

Sekine K, Toida T, Saito M. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Investig. 1985;2007: 117:2197–2204.

Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M, Cassard L, Palmer DC, Boni A, Peek RM, Jones NL. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 2009; 69:632–639.

Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner, S.R. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccineagainst cervical infection and precancer caused by oncogenic HPV types (PATRICIA): Final analysis of a double-blind, randomised study in young women. Lancet. 2009; 374:301–314.

Aranda F, Bloy N, Pesquet J, Petit B, Chaba K, Sauvat A, Kepp O, Khadra N, Enot D, Pfirschke C, et al. Immune-dependent antineoplastic effects of cisplatin plus pyridoxine in non-small-cell lung cancer. Oncogene. 2015; 34:3053–3062.

Dembi´ nski A, Warzecha Z, Ceranowicz P, Dembi´ nski M, Cieszkowski J, Gosiewski T, Bulanda M, Kus´nierz-Cabala B, Gała˛zka K, Konturek PC. Synergic interaction of rifaximin and mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats. Gastroenterol. Res. Pract. 2016; 2016:3126280.

Dembi´ nski A, Warzecha Z, Ceranowicz P, Dembi´ nski M, Cieszkowski J, Gosiewski T, Bulanda M, Kus´nierz-Cabala B, Gała˛zka K, Konturek PC. Synergic Interaction of Rifaximin and Mutaflor (Escherichia coli Nissle 1917) in the Treatment of Acetic Acid-Induced Colitis in Rats. Gastroenterol. Res Pract. 2016; 2016:3126280.

Konishi H, Fujiya M, Tanaka H, Ueno N, Moriichi K, Sasajima J, Ikuta K, Akutsu H, Tanabe H, Kohgo Y. Probiotic-derived ferrichrome inhibits colon cancer progression via JNK-mediated apoptosis Nat. Commun. 2016; 7:12365.

Lenoir, M, Del Carmen, S, Cortes-Perez, N.G, Lozano-Ojalvo, D, Muñoz-Provencio, D, Chain, F, Langella, P, de Moreno de LeBlanc, A, LeBlanc, J.G, Bermúdez-Humarán, L.G. Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J. Gastroenterol. 2016; 51: 862–873.

Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P, Rossetti, S, Berretta, M, Facchini, G,A.Y. Tamime, M. Saarela, A. Korslund Søndergaard, V.V. Mistry, N.P. Shah: Production and Maintenance of Via- bility of Probiotic Micro-Organisms in Dairy Products. In: Probiotic Dairy Products, A.Y. Tamime (Ed.), Blackwell Publishing, Oxford, UK (2005) pp. 44–51

Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr. Oncol. Rep.

Moss SF. The clinical evidence linking. Cell. Mol. Gastroenterol. Hepatol. 2017; 3:183–191.

Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology. 2002; 123: 542–553.

Halazonetis, T.D. Constitutively active DNA damage checkpoint pathways as the driving force for the high frequency of p53 mutations in human cancer. DNA Repair. 2004; 3:1057–1062.

Lara-Tejero, M, Galán, J.E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-likeprotein. Science. 2000; 290:354–357.

Bergounioux, J, Elisee, R, Prunier, A.L, Donnadieu, F, Sperandio, B, Sansonetti, P, Arbibe, L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe. 2012; 11:240–252.

Buti, L, Spooner, E, Van der Veen, A.G, Rappuoli, R, Covacci, A, Ploegh, H.L. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumorsuppressor pathway of the host. Proc. Natl. Acad. Sci. USA. 2011; 108:9238–9243.

Lu R,Wu S, Zhang YG, Xia Y, Liu X, Zheng Y, Chen H, Schaefer KL, Zhou Z, Bissonnette M, et al. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signalingpathway. Oncogenesis. 2014; 3:e105.

Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. Protein tyrosine phosphatase SHP-2:A proto-oncogene product that promotes Ras activation. Cancer Sci. 2009; 100:1786–1793.

Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB, Crowe SE. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect. Immun. 2007; 75:4030–4039.

Belkaid, Y, Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014; 157:121–141.

Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A,Rabizadeh, S,Woster, P.M, Sears, C.L, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroidesfragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA 2011; 108:15354–15359.

Huycke, M.M, Moore, D, Joyce, W, Wise, P, Shepard, L, Kotake, Y, Gilmore, M.S. Extracellular superoxideproduction by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminalquinol oxidases. Mol. Microbiol. 2001; 42:729–740.

Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J, Gamliel M, Enk J, Bar-On Y, Stanietsky-Kaynan N, Coppenhagen-Glazer S, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitoryreceptor TIGIT protects tumors from immune cell attack. Immunity. 2015; 42:344–355.

Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe. 2011; 10:324–335.

Doisneau-Sixou, S.F, Sergio, C.M, Carroll, J.S, Hui, R, Musgrove, E.A, Sutherland, R.L. Estrogen andantiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer. 2003; 10:179–186.

Fernández, M.F, Reina-Pérez, I, Astorga, J.M, Rodríguez-Carrillo, A, Plaza-Díaz, J, Fontana, L. BreastCancer and Its Relationship with the Microbiota. Int. J. Environ. Res. Public Health 2018; 15:1747.

Kilkkinen A, Rissanen H, Klaukka T, Pukkala E, Heliövaara, M, Huovinen, P, Männistö, S, Aromaa A, Knekt, P. Antibiotic use predicts an increased risk of cancer. Int. J. Cancer. 2008; 123, 2152–2155.

Conlon, M.A, Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients. 2014; 7:17–44.

Rafter J. Probiotics and colon cancer. Best Practice & Research Clinical Gastroenterology. 2003; 17: 849–859.

Hatakeyama M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017; 93:196–219.

Dy, G.K, Adjei, A.A. Understanding, recognizing, and managing toxicities of targeted anticancer therapies.CA Cancer J. Clin. 2013; 63:249–279.

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. Cancer genome landscapes. Science. 2013; 339:1546–1558.

Bhang HE, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R, Hims MM, Singh AP, Kao I, Rakiec D, Shaw P, et al. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 2015; 21:440–448.

Kloor, M, von Knebel Doeberitz, M. The immune biology of microsatellite-unstable cancer. Trends Cancer. 2016; 2:121–133.

Dagogo-Jack, I, Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94

McGranahan, N, Swanton, C. Biological and therapeutic impact of intratumor heterogeneity in cancer evolution. Cancer Cell 2015; 27:15–26.

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao, GF. higher efficacy on the regression of an established tumor in mice. Cancer Research, 45:1300–1307.

Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, Seliger B, Marincola FM. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur. J. Cancer. 2017; 81:116–129.

Roy S, Trinchieri G. Microbiota: A key orchestrator of cancer therapy. Nat. Rev. Cancer. 2017; 17:271–285.

Nayak RR, Turnbaugh PJ. Mirror, mirror on the wall: Which microbiomes will help heal them all BMC Med. 2016; 14:72.

McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. IOWA Orthop. J. 2006; 26:154–158.

Zbar B, Bernstein I, Tanaka T, Rapp HJ. Tumor immunity produced by the intradermal inoculation of living tumor cells and living Mycobacterium bovis (strain BCG). Science. 1970; 170:1217–1218.

Hoesl CE, Altwein JE. The probiotic approach: An alternative treatment option in urology. Eur. Urol. 2005; 47:288–296.

Felgner S, Kocijancic D, Frahm M, Weiss S. Bacteria in cancer therapy: Renaissance of an old concept. Int. J. Microbiol. 2016; 2016:8451728.

Stebbing J, Dalgleish A, Gifford-Moore A, Martin A, Gleeson C, Wilson G, Brunet LR, Grange J, Mudan S. An intra-patient placebo-controlled phase I trial to evaluate the safety and tolerability of intradermal IMM-101 in melanoma. Ann. Oncol. 2012; 23:1314–1319.

Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, Sherry RM, Topalian SL, Yang JC, Stock F, et al. Phase I study of the intravenous administration of attenuated Salmonellatyphimurium to patients with metastatic melanoma. J. Clin. Oncol. 2002; 20:142–152.

Kramer MG, Masner M, Ferreira FA, Hoffman, RM. Bacterial therapy of cancer: Promises, limitations,and insights for future directions. Front. Microbiol. 2018; 9:16.

Schwabe RF, Jobin C. The microbiome and cancer. Nat. Rev. Cancer. 2013; 13:800–812.

Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013; 342:967–970.

Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet. Mol. Res. 2015; 14:5642–5651.

Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, Enot DP, Pfirschke C, Engblom C, Pittet MJ, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342:971–976.

Jahrsdörfer B, Weiner GJ. CpG oligodeoxynucleotides as immunotherapy in cancer. Update Cancer Ther. 2008; 3:27–32.

Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359:91–97.

Chen Q, Wang C, Chen G, Hu Q, Gu Z. Delivery strategies for immune checkpoint blockade. Adv. Healthc. Mater. 2018; 7:e1800424.

Buchbinder EI, Desai A. CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition. Am. J. Clin. Oncol. 2016; 39:98–106.

Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al. Commensal Bifidobacterium promotes antitumor immunity andfacilitates anti-PD-L1 efficacy. Science. 2015; 350:1084–1089.

Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018; 359:97–103.

Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018; 359:104–108.

Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N. Engl. J. Med. 2015; 373:1270–1271.

Chaput N, Lepage P, Coutzac C, Soularue E, Le Roux K, Monot C, Boselli L, Routier E, Cassard L, Collins M, et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanomapatients treated with ipilimumab. Ann. Oncol. 2017; 28:1368– 1379.

Vidya S, Thiruneelakandan G. Probiotic potentials of lactobacillus and its anti-cancer activity. Int J Curr Res. 2015; 7:20680e4.

Gayathri D, Rashmi BS. Anti-cancer properties of probiotics: a natural strategy for cancer prevention. EC Nutrition. 2016; 5:1191e202.

Vafaeie F. Critical review on probiotics and its effect on cancer. Cancer Press. 2016; 2:30e4.

Kahouli I, Malhotra M, Alaoui-Jamali MA, Prakash S. In-vitro characterization of the anti-cancer activity of the probiotic bacterium Lactobacillus fermentum NCIMB 5221 and potential against colorectal cancer cells. J Cancer Sci Ther. 2015; 7:224e35.

Awaisheh SS, Obeidat MM, Al-Tamimi HJ, Assaf AM, EL- Qudah JM, Al-khazaleh JM, et al. In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. Milk Sci Int. 2016 ;69:27e31.

Andrews JM, Tan M. Probiotics in luminal gastroenterology: the current state of play. Intern Med J. 2012; 42(12):1287–1291.

Lee JH, Nam SH, Seo WT, Yun HD, Hong SY, Kim MK, Cho KM. The production of surfactin during the fermentation of cheonggukjang by potential probiotic Bacillus subtilis CSY191 and the resultant growth suppression of MCF-7 human breast cancer cells. Food Chem. 2012; 131(4):1347–1354.

Fotiadis CI, Stoidis CN, Spyropoulos BG, Zografos ED. Role of probiotics, prebiotics and synbiotics in chemoprevention for colo- rectal cancer. World J Gastroenterol: WJG. 2008; 14(42):6453.

Kaur N, Gupta AK. Applications of inulin and oligofructose in health and nutrition. J Biosci. 2002; 27(7):703–714.

Anukam KC, Reid G. Probiotics: 100 years (1907–2007) after Elie Metchnikoff’s observations. In: Mendez-Vilas, A. (Ed.), Communicating Current Research and Educational Topics and Trends in Applied Microbiology., Spain. 2007; 466–474.

Orlando A, Messa C, Linsalata M, Cavallini A, Russo F. Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacol. Immunotoxicol. 2009; 31:108–116.

Kim Y, Lee D, Kim D, Cho J, Yang J, Chung M, et al. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res. 2008; 31:468.

Urbanska AM, Bhathena J, Martoni C, Prakash S. Estimation of the potential antitumor activity of microencapsulated Lactobacillus acidophi- lus yogurt formulation in the attenuation of tumorigenesis in Apc(Min/+) mice. Dig. Dis. Sci. 2009; 54:264–273.

Goldin BR, Gualtieri LJ, Moore RP. The effect of Lactobacillus GG on the initiation and promotion of DMH induced intestinal tumors in the rat. Nutr. Cancer. 1996; 25:197–204.

Shahani KM, Ayebo AD. Role of dietary lactobacilli in gastrointestinal microecology. Am. J. Clin. Nutr. 1980; 33:2448–2457.

Lidbeck A, Overvik E, Rafter J, Nord CE, Gustafsson JA. Effect of Lactobacillus acidophilus supplements on mutagen excretion in feces and urine in humans. Microb. Ecol. Health Dis. 1992a; 5:59–67.

Biasco G, Paganelli GM, Brandi G, Brillanti S, Lami F, Callegari C, Gizzi G. 1991. Effect of Lactobacillus acidophilus and Bifidobacterium bifidum on rectal cell kinetics and fecal pH. Ital. J. Gastroenterol. 23, 142. bladder cancer. BLP Study Group. Urol. Int. 1992; 49:125–129.

De Simone C, Vesely R, Bianchi Salvadori B, Jirillo E. The role of probiotics in modulation of the immune system in man and in animals. Int.J. Immunother. 1993; 9:23–28.

Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 1996; 64:5403–5405.

Sütas Y, Soppi E, Korhonen H, et al. Suppression of lymphocyte proliferation in vitro by bovine caseins hydrolyzed with Lactobacillus casei GG-derived enzymes. J. Allergy Clin. Immunol. 1996; 98:216–224.

Pessi T, Sütas Y, Saxelin M, Kallioinen H, Isolauri E. Antiproliferative effects of homogenates derived from five strains of candidate probiotic bacteria. Appl. Environ. Microbiol. 1999; 65:475–478.

Aureli P, Capurso L, Castellazzi AM, Clerici M, Giovannini M, Morelli L, Poli A, Pregliasco F, Salvini F, Zuccotti GV, Probiotics and health: an evidence-based review. Pharmacol. Res. 2011; 63:366–376.

Sivieri K, Spinardi-Barbusan ALT, Barbisan LF, Bedani R, Pauly ND, Carlos IZ, Benzatti F, Vendramini RC, Rossi EA. Probiotic Enterococcus faecium CRL 183 inhibit chemically induced colon cancer in male Wistar rats. Eur. Food Res. Technol. 2008; 228:231–237.

Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS. Bifidobacterium longum, a lactic acid-producing intestinal bacte- rium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis. 1997; 18:833–841.

Ling WH, Korpela R, Mykkanen H, Salminen S, Hanninen O. Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive enzyme activities in healthy female adults. J. Nutr. 1994; 124:18–23.

Marteau P, Pochart P, Flourie B, Pellier P, Santos L, Desjeux J.-H, Rambaud JC. Effect of chronic ingestion of a fermented dairy product containing Lactobacillus acidophilus and Bifidobacterium bifidum on metabolic activities of the colonic flora in humans. Am. J. Clin. Nutr. 1990; 52:685–688.

Goldin BR, Gorbach SI. The effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am. J. Clin. Nutr. 1984; 39:756–761.

Bajic JE, Johnston IN, Howarth GS, Hutchinson MR. From the Bottom-Up: Chemotherapy and Gut-Brain Axis Dysregulation. Front. Behav. Neurosci. 2018; 12:104.

Lawrie TA, Green JT, Beresford M, Wedlake L, Burden S, Davidson SE, Lal S, Henson CC, Andreyev HJN. Interventions to reduce acute and late adverse gastrointestinal effects of pelvic radiotherapyfor primary pelvic cancers. Cochrane Database Syst. Rev. 2018; 1:CD012529.

Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science. 2018; 359:1366–1370.

Vanderhoof JA, Young R. Probiotics in the United States. Clin. Infect. Dis. 2008; 46(Suppl. 2):S67–S72; discussion S144–S151.

Mego M, Holec V, Drgona L, Hainova K, Ciernikova S, Zajac V. Probiotic bacteria in cancer patientsundergoing chemotherapy and radiation therapy. Complement. Ther. Med. 2013; 21:712–723.

Peterson DE, Boers-Doets CB, Bensadoun RJ, Herrstedt J, Committee EG. Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up.Ann. Oncol. 2015;26 (Suppl. 5):v139–v151.

Gianotti L, Morelli L, Galbiati F, Rocchetti S, Coppola S, Beneduce A, Gilardini C, Zonenschain D, Nespoli A, Braga M. A randomized double-blind trial on perioperative administration of probiotics incolorectal cancer patients. World J. Gastroenterol. 2010; 16:167–175.

Demers M, Dagnault A, Desjardins J. A randomized double-blind controlled trial: Impact of probiotics ondiarrhea in patients treated with pelvic radiation. Clin. Nutr. 2014; 33:761–767.

Mego M, Chovanec J, Vochyanova-Andrezalova I, Konkolovsky P, Mikulova M, Reckova, M, Miskovska V, Bystricky B, Beniak J, Medvecova L, et al. Prevention of irinotecan induced diarrhea by probiotics: A randomized double blind, placebo controlled pilot study. Complement Ther. Med. 2015, 23,356–362.

Theodoropoulos GE, Memos NA, Peitsidou K, Karantanos T, Spyropoulos BG, Zografos G. Synbiotics and gastrointestinal function-related quality of life after elective colorectal cancer resection. Ann. Gastroenterol. 2016; 29:56–62.

Consoli ML, da Silva RS, Nicoli JR, Bruña-Romero O, da Silva RG, de Vasconcelos Generoso S, Correia MI. Randomized clinical trial: Impact of oral administration of Saccharomyces boulardii on geneexpression of intestinal cytokines in patients undergoing colon resection. JPEN J. Parenter. Enter. Nutr. 2016; 40:1114–1121.

Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L, Wettergren Y. Intestinalmicrobiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ OpenGastroenterol. 2017;4, e000145.

Flesch AT, Tonial ST, Contu PC, Damin DC. Perioperative synbiotics administration decreasespostoperative infections in patients with colorectal cancer: A randomized, double-blind clinical trial. Rev. Col.Bras. Cir. 2017; 44, 567–573.

van Nood E, Dijkgraaf MG, Keller JJ. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013; 368:2145.

Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, Mimura I, Morita H, Sugiyama D, Nishikawa, H, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016; 128, 2083–2088.

Bel S, Elkis Y, Elifantz H, Koren O, Ben-Hamo R, Lerer-Goldshtein T, Rahimi R, Ben Horin S, Nyska A, Shpungin S, et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMFmice. Proc. Natl. Acad. Sci. USA. 2014; 111:4964–4969.

Cohen NA, Maharshak N. Novel indications for fecal microbial transplantation: Update and review of the literature. Dig. Dis. Sci. 2017; 62:1131–1145.

Kasmi G, Andoni R, Mano V, Kraja D, Muco E, Kasmi I. Streptococcus bovis isolated in haemoculture a signal of malignant lesion of the colon. Clin Lab. 2011; 57:1007-9.

Chang JH, Shim YY, Cha SK, Reaney MJ, Chee KM. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J Med Microbiol. 2012; 61:361-8.

De Vuyst L, Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Agric Food Chem 2007; 13:194-9.

Lievin-Le Moal V, Servin AL. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev. 2006; 19:315-37.

Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, et al. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbio. 2008; 125:286-92.

Lee J, Yang W, Hostetler A, Schultz N, Suckow MA, Stewart KL, et al. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol. 2016; 16:69.

Ashtari S, Pourhoseingholi MA, Sharifian A, Zali MR. Hepatocellular carcinoma in Asia: Prevention strategy and planning. World Hepatol. 2015; 7:1708-17.

West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015; 15:615-29.

Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature. 2012; 491:254-8.

Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 2009; 15:103-13.

Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004; 118:285-96.

Uccello, M, Malaguarnera, G, Basile, F, D’agata, V, Malaguarnera, M, Bertino, G, Vacante, M, Drago, F, Biondi, A. Potential role of probiotics on colorectal cancer prevention. BMC Surg. 2012; 12, S35.

Wada, M, Nagata, S, Saito, M, Shimizu, T, Yamashiro, Y, Matsuki, T, Asahara, T, Nomoto, K. Eects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Supportive Care Cancer. 2010; 18:751–759.

Urbancsek H, Kazar T, Mezes I, Neumann K. Results of a double-blind, randomized study to evaluate the ecacy and safety of Antibiophilus in patients with radiation-induced diarrhoea. Eur. J. Gastroenterol. Hepatol. 2001;13:391–396

Lopez M, Li N, Kataria J, Russell M, Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J. Nutr. 2008; 138:2264–2268.

Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou, E, Lamprianidou EE, Saxami G, Ypsilantis, P, Lampri ES, Simopoulos, C, et al. Lactobacillus casei Exerts Anti-Proliferative Effects Accompanied by Apoptotic Cell Death and Up-Regulation of TRAIL in Colon Carcinoma Cells. PLoS ONE. 2016; 11, e0147960.

Awaisheh SS, Obeidat MM, Al-Tamimi HJ, Assaf AM, EL-Qudah JM, Al-khaza’leh JM, Rahahleh RJ. In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. Milchwissenschaft. 2016; 69:27–31.

Hatakka K, Holma R, El-Nezami H, Suomalainen T, Kuisma M, Saxelin M, Poussa T, Mykkänen H, Korpela R. The influence of Lactobacillus rhamnosus LC705 together with Propionibacterium freudenreichii ssp. shermanii JS on potentially carcinogenic bacterial activity in human colon. Int. J. Food Microbiol. 2008; 128:406–410.

Ohara T, Yoshino K, Kitajima M. Possibility of preventing colorectal carcinogenesis with probiotics. Hepatogastroenterology. 2010; 57:1411–1415.

Pala V, Sieri S, Berrino F, Vineis P, Sacerdote C, Palli D, Masala G, Panico S, Mattiello A, Tumino R, et al. Yogurt consumption and risk of colorectal cancer in the Italian European prospective investigation into cancer and nutrition cohort. Int. J. Cancer. 2011; 129:2712–2719.

Zhang JW, Du P, Gao J, Yang BR, Fang WJ, Ying CM. Preoperative probiotics decrease postoperative infectious complications of colorectal cancer. Am. J. Med. Sci. 2012; 343:199–205.

Wada M, Nagata S, Saito M, Shimizu T, Yamashiro, Y, Matsuki, T, Asahara, T, Nomoto, K. Effects of the enteral administration of Bifidobacterium breve on patients undergoing chemotherapy for pediatric malignancies. Supportive Care Cancer. 2010; 18:751–759.

Kotzampassi K, Stavrou G, Damoraki G, Georgitsi M, Basdanis G, Tsaousi, G, Giamarellos-Bourboulis, E.J. A Four-Probiotics Regimen Reduces Postoperative Complications After Colorectal Surgery: A Randomized, Double-Blind, Placebo-Controlled Study. World J. Surg. 2015; 39:2776–2783.

Kashfi K. Anti-inflammatory agents as cancer therapeutics. Adv. Pharmacol. 2009; 57:31– 89.

Most read articles by the same author(s)