PRELIMINARY CYTOGENETIC STUDIES OF Parachanna obscura OBTAINED FROM EGBE RESERVOIR, EGBE EKITI

Main Article Content

F. A. OLA-OLADIMEJI
O. V. EKUNDARE
A. V. AYODELE

Abstract

Parachanna obscura belongs to the Family Channidae and are commonly found in Asia and Africa. This preliminary research was carried out to assess and provide information on the chromosome number and morphology of P. obscura using standard procedures. The modal diploid chromosome number of 2n = 44 was observed in this study. The study further showed that the chromosome types for the studied fish consisted of 10 metacentric, 12 submetacentric, 20 acrocentric and 2 telocentric chromosomes with 'Nombre Fondamental' (NF) of 68. The present study provides a piece of baseline information on the karyotype of this important species of fish which can help in further studies regarding its production in a controlled environment for its sustainability.

Keywords:
Parachanna obscura, preliminary, chromosome, morphology, Nombre Fundamental

Article Details

How to Cite
OLA-OLADIMEJI, F. A., EKUNDARE, O. V., & AYODELE, A. V. (2020). PRELIMINARY CYTOGENETIC STUDIES OF Parachanna obscura OBTAINED FROM EGBE RESERVOIR, EGBE EKITI. Asian Journal of Advances in Research, 5(1), 1-5. Retrieved from https://mbimph.com/index.php/AJOAIR/article/view/1633
Section
Original Research Article

References

Qin J, AW Fast. Food selection and growth of young Snakehead Channa striatus. J. Appl. Ichthyol. 1997; (13):21-25.

Ali AB. Aspects of the reproductive biology of female snakehead (Channa striata Bloch) obtained from irrigated rice agroecosystem, Malaysia. Hydrobiologia. 1999;411:71-77.

Olanrewaju AN, Ajani EK, Kareem OK, Orisasona O. Relationship Between Physico-Chemical Parameters and Reproductive Indices of Parachanna obscura (Gunther 1861) in Eleyele Reservoir, Ibadan, Nigeria. Eur Exp Biol. 2017;7(6):36.

De Lapeyre BA, Muller-Belecke A, Horstgen-Sehwark G. Increased spawning activity of female Nile tilapia (Oreochromis niloticus) (L.) after stocking density and photoperiod manipulation. Aquacult. Res. 2010;41(10):561-567.

Ibrahim N, Nagar G.E. Water quality, fish production and economics of Nile tilapia, Oreochromis niloticus and African catfish, Clarias gariepinus, monoculture and polyculture. J. World Aquacult. Soc. 2010;41(4):574-582.

Mat Jais AM, McCullock R, Croft K. Fatty acid and amino acid composition in Haruan as a potential role in wound healing. Gen. Pharmacol.: Vasc. Syst. 1994;25:947-950.

Ana M. González-Tizón, Verónica Rojo, Elisabetta Menini, Zeltia Torrecilla, Andrés Martínez-Lage. Karyological Analysis of the Shrimp Palaemon Serratus (Decapoda: Palaemonidae), Journal of Crustacean Biology. 2013;33(6):843–848.
Available:https://doi.org/10.1163/1937240X-00002185

Ama-Abasi D, Anthony O. Proximate Analysis of Snakehead Fish, Parachanna obscura, (Gunther 1861) of the Cross River, Nigeria. Journal of Fisheries and Aquatic Science. 2013;8:295-298.

Bolaji B, Mfon T, Utibe D. Preliminary study on the aspects of the biology of snakehead fish Parachanna obscura (günther) in a Nigerian wetland. African Journal of Food, Agriculture, Nutrition and Development. 2011;11(2).
DOI: 10.4314/ajfand.v11i2.65923

Hartwell LH, Hood L, Goldberg ML, Reynolds AE, Silver LM, Veres RC. Genetics: From Genes to Genomes, the Chromosome Theory of Inheritance. McGraw-Hill Higher Education. 2000;3:70-90.

Sofy HI, Layla AM, Iman MKA. Karyotypic diversity of some tilapia species. Nature and Science. 2008; 6(1):19-27.

Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220.
DOI: 10.1111/j.1601-5223.1964.tb01953.x

Jegede OI, Akintoye MA, Awopetu JI. Karyotype of the african Weakly electric fish, Gymnarchus niloticus (osteoglosiformes: gymnarchidae) from oluwa river, Nigeria Journal of Science. 2018;20(3): 539-545.
DOI: https://dx.doi.org/10.4314/ijs.v20i3.8

Bertollo LAC, Moreira–Filho O, Galetti Jr. PM. Cytogenetics and taxonomy: considerations based on chromosome studies of freshwater fish. Journal of Fish Biology. 1986;28(2).
Available:https://doi.org/10.1111/j.1095-8649.1986.tb05153.x

Galetti M, Morellato LPC. Diet of the large fruit-eating bat Artibeus literatus in a forest fragment in Brazil. Mammalia. 1994;58:661-665.

Sczepanski TS, Noleto RB, Kantek DLZ, Cortinhas MCS, Cestari MM. Classical and molecular cytogenetics of Atherinella brasiliensis (Teleostei: Atheriniformes) from South coast of Brazil. Journal of Fish Biology. 2007;71:453-460.

Ifeoluwa OT, Adeogun AO, Bakare AA, Sowunmi AA, Ugwumba AAA, Ugwumba OA. Karyotype description of six species of Clarias (Siluriformes: Clariidae) from South West Nigeria. International Journal of Animal and Veterinary Advances. 2011;3(4):364- 373.
Available:http://www.maxwellsci.com/print/ijava/v3-264-273.pdf

Nirchio M, Rossi Anna Rita, Foresti F, Oliveira C. Chromosome evolution in fishes: a new challenging proposal from Neotropical species. Neotropical Ichthyology. 2014;12(4):761-770.
Avaiable:https://dx.doi.org/10.1590/1982-0224-20130008

Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish, in Repetitive DNA, ed. Garrido-Ramos M. A. (Basel: Karger). 2012;197–221.
DOI: 10.1159/000337950

Christopher JSG, Murugesan AG, Sukumaran N. Induction of meiotic gynogenesis in the stinging catfish Heteropneustes fossilis (Bloch) and evidence for female homogamety. Aquac. Res. 2010;42:129–138.

MacGregor H, Varly J. Working with animal chromosomes. 1st ed. New York: John Wiley; 1993.

Fister S, Cakic P, Kataranovski D. Karyotype analysis of Barbus barbus L. and Barbus peloponnensius V. (Cyprinidae) and frequencies of breaks and gap-type structural chromosome changes in fishes from the river Vapa. Acta Veterinaria (Belgrade). 1999;49:385–392.

Ünlü E, Kilic-Demirok N. Karyotypes of cyprinid fish Capoeta trutta and Capoeta capoeta umbla (Cyprinidae) from the Tigris River. Turk. J. Zool. 2001;25:389–393.

Suleyman G, Ahmet C, Ilhan S, Bertal K. Karyotype analysis in Alburnus heckeli (Battalgil, 1943) from Lake Hazer. Turk. J. Vet. Anim. Sci. 2004;28:309-314.

Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG. Fish cytogenetics. 1st ed. Enfield, NH: Science Publishers; 2007.

Majolagbe FA, Awopetu JI, Omitogun OG. Cytogenetical study of Clarias gariepinus (Burchell, 1822) and Heterobranchus bidorsalis (Geoffroy Saint-Hilaire, 1809) and their reciprocal hybrids. Adamawa State University Journal of Scientific Research. 2011;1(1):32-38. (Nigeria).
Avaiable:http://adsujsr.com/download/article-1-1-4/#

Devlin R, Nagahama Y. Review article sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191- 364.
DOI: 10.1016/S0044-8486(02)00057-1

Molina WF, Galetti PM. Early replication banding in Leporinus species (Osteichthyes, Characiformes) bearing differentiated sex chromosomes (ZW). Genetica. 2007;130:153–160.
DOI: 10.1007/s10709-006-9002-z

Supiwong W, Jearranaiprepame P, Tanomtong A. A New Report of Karyotype in the Chevron Snakehead Fish, Channa striata (Channidae, Pisces) from Northeast Thailand. Cytologia. 2009;74:317-322.
DOI: 10.1508/cytologia.74.317

Donsakul T, Magtoon W. A chromosome study on five species of fishes (Channa, family Channidae), from Thailand. The Proceedings of 29th Kasetsart University Annual Conference (Fisheries section). Kasetsart University, Bankok. 1991;561-574.

Nayyar RP. Karyotype studies in thirteen species of fishes. Genetica. 1966;37:78–92.

Banerjee SK, Misra KK, Banerjee S, Ray-Chaudhuri SP. Chromosome numbers, genome sizes, cell volumes and evolution of snake-head fish (family Channidae). J. Fish Biol. 1988;33:781–789.

Ruma F, Ahmed ATA, Alam SS. Karyotype Analysis of Channa punctata Bloch and Channa orientalis Schneider with Giemsa, CMA and DAPI. Cytologia. 2006;71:425– 430.