Main Article Content



Cancer is the leading cause of death globally. Imitative drugs are prescribed to patients caused severe adverse effects that caused weakness and losing power of patients. Although many drugs used against several types of cancer, more specific agents with lower side effects are necessary. Natural medicinal plants are used as antitumor and chemo-preventive agents in numerous experimental models of carcinogenesis. Moringa tree have shown to be effective against several ailments including cancer which was attributed to its bioactive constituents. These phytochemical compounds proved that they have potential anticancer agents. However, proliferation and the induction of apoptosis are regulated by several mechanisms. The current review will discuss the mechanism by which Moringa could fight different types of cancer and its role as an immune-boosting agent.

Moringa, anticancer activity, immune-boosting activity, mechanism of action.

Article Details

How to Cite
IBRAHIM, A. A. E. (2020). ANTICANCER AND IMMUNE-BOOSTING ACTIVITIES OF Moringa SPECIES. Asian Journal of Advances in Research, 5(3), 5-26. Retrieved from
Review Aricle


Fuglie LJ. The miracle tree: The multiple attributes of Moringa. Church World Service, West Africa Regional Office; 2001.

Tiloke C, Anand K, Gengan RM, Chuturgoon AA. Moringa oleifera and their phytonanoparticles: Potential anti proliferative agents against cancer. Biomedicine and Pharmacotherapy. 2018;108(2018):457-466.

Mukunzi D, Nsor-Atindana J, Xiaoming Z, Gahungu A, Karangwa E, Mukamurezi G. Comparison of volatile profile of Moringa oleifera leaves from Rwanda and China using HS-SPME. Pakistan Journal of Nutrition. 2011;10(7):602-608.

Fahey WJ. Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic and prophylactic properties. Part 1. Trees Life Journal. 2005;1:1–24.

Bashir K, Waziri A, Musa D. Moringa oleifera, a potential miracle tree: A review. Journal of Pharmaceutical and Biological Sciences. 2016;11(6):25-30.

Dolla S, Abdulkarim SM, Ahmad SH, Khoramnia A, Ghazali HM. Physicochemical properties and potential food applications of Moringa oleifera seed oil blended with other vegetable oils. Journal of Oleo Science. 2014;63(8):811-22

Biswas SK, Chowdhury A, Das J, Roy A, Hosen SZ. Pharmacological potentials of Moringa oleifera Lam.: A review. International Journal of Pharmaceutical Sciences and Research. 2012;3(2):305-310.

Igwe K, Nwankwo P, Otuokere I, Ijioma S, Amaku F. GCMS analysis of phytocomponents in the methanolic extract of Moringa oleifera leave. International Journal of Research in Pharmaceutical Sciences. 2015;2(11):1-6.

Lin H, Zhu H, Tan J, Wang H, Wang Z, Li P, Zhao C, Liu J. Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules. 2019;24(5):942. DOI: 10.3390/molecules24050942

Waiyaput W, Payungporn S, Issara-Amphorn J, Nattanan T, Panjaworayan T. Inhibitory effects of crude extracts from some edible Thai plants against replication of hepatitis B virus and human liver cancer cells. BMC Complementary and Alternative Medicine. 2012;12:246.

Kumar Gupta S, Kumar B, Srinivasan B, Nag TC, Srivastava S, Saxena R, Aggarwal A. Retinoprotective effects of Moringa oleifera via antioxidant, antiinflammatory, and anti-angiogenic mechanisms in streptozotocin-induced diabetic rats. Journal of Ocular Pharmacology and Therapeutics. 2013;29(4): 419-426.

Jung IL. Soluble extract from Moringa oleifera leaves with a new anticancer activity. PloS One. 2014;9(4):e95492.

Vasanth K, Ilango K, Mohan Kumar R, Agrawal A, Dubey GP. Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids and Surf B: Biointerfaces. 2014;117:354-359.

Sivasankari B, Anandharaj M, Gunasekaran P. An ethnobotanical study of indigenous knowledge on medicinal plants used by the village peoples of Thoppampatti, Dindigul district, Tamilnadu, India. Journal of Ethnopharmacology. 2014;153:408-423. DOI: 10.1016/j.jep.2014.02.040

Abd Rani NZ, Husain K, Kumolosasi E. Moringa genus: A review of phytochemistry and pharmacology. Frontiers in Pharmacology, 2018;9(108):1-26. DOI: 10.3389/fphar.2018.00108

Wang Y, Gao Y, Ding H, Liu S, Han X, Gui J, Liu D. Subcritical ethanol extraction of flavanoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chemistry. 2017;218:152-158. DOI: 10.1016/j.foodchem.2016.09.058

Atta AH, Mouneir SM, Nasr SM, Sedky D, Mohamed AM, Atta SA, Desouky HM. Phytochemical studies and anti-ulcerative colitis effect of Moringa oleifera seeds and Egyptian propolis methanol extracts in a rat model. Tropical Biomedicine. 2019;9(3):98-108.

Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: An overview. International Journal of Molecular Sciences. 2015b;16:12791–12835. DOI: 10.3390/ijms160612791

Park EJ, Cheenpracha S, Chang LC, Kondratyuk TP. Inhibition of lipopolysac-charide-induced cyclooxygenase-2 and inducible nitric oxide synthase expression by 4-[(2’-O-acetyl-alpha-Lrhamnosyloxy)benzyl] isothiocyanate from Moringa oleifera. Nutrition and Cancer. 2011;63:971-82.

Waterman C, Rojas-Silva P, Tumer TB, Kuhn P, Richard AJ, Wicks S, Stephens JM, Wang Z, Mynatt R, Cefalu W, Raskin I. Isothiocyanate-rich Moringa oleifera extract reduces weigh gain, insulin resistance and hepatic gluconeogenesis in mice. Molecular Nutrition and Food Research. 2015;59:1013-1024. DOI: 10.1002/mnfr.201400679

Nibret E, Wink M. Trypanocidal and antileukaemic effects of the essential oils of Hagenia abyssinica, Leonotis ocymifolia, Moringa stenopetala, and their main individual constituents. Phytomedicine. 2010;17:911–920. DOI: 10.1016/j.phymed.2010.02.009

Verma VK, Singh N, Saxena P, Singh R. Anti-ulcer and antioxidant activity of Moringa Oleifera (Lam) leaves against aspirin and ethanol induced gastric ulcer in rats. International Research Journal of Pharmaceuticals. 2012;2(2):46-57.

Leone A, Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, Spadafranca A, Battezzati A, Schiraldi A, Pozzi F, di Lello S, Filippini S, Bertoli S. Nutritional characterization of phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi refugee camps and Haiti. International Journal of Molecular Sciences. 2015a;15: 18923–18937. DOI: 10.3390/ijms160818923

Davinelli S, Bertoglio JC, Zarrelli A, Pina R. Scapagnini G. A randomized clinical trial evaluating the efficacy of an anthocyanin-maqui berry extract (Delphinol®) on oxidative stress biomarkers. Journal of the American College of Nutrition. 2015;34(Suppl. 1):28–33. DOI: 10.1080/07315724.2015.1080108

Saini RK, Shetty NP, Giridhar P. Carotenoid content in vegetative and reproductive parts of commercially grown Moringa oleifera Lam. cultivars from India by LC–APCI–MS. European Food Research and Technology. 2014;238:971–978. DOI: 10.1007/s00217-014-2174-3

El-Alfy TS, Ezzat SM, Hegazy AK, Amer AMM, Kamel GM. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (Family: Moringaceae) growing in Egypt. Pharmacognosy Magazine. 2011;7:109–115. DOI: 10.4103/0973-1296.80667

Sahakitpichan P, Mahidol C, Disadee W, Ruchirawat S, Kanchanapoom T. Unusual glycosides of pyrrole alkaloid and 4′-hydroxyphenylethanamide from leaves of Moringa oleifera. Phytochemistry. 2011;72: 791–795. DOI: 10.1016/j.phytochem.2011.02.021

Bargah RK, Das C. Isolation and characterization of steroidal glycoside from chloroform extract of the stem bark of Moringa pterygosperma Gaertn. International Journal of Innovative Science Engineering and Technology. 2014;3:18319–18322. DOI: 10.15680/IJIRSET.2014.0312077

Abd El Baky HH, El-Baroty GS. Characterization of Egyptian Moringa peregrine seed oil and its bioactivities. International Journal of Management Sciences and Business Research. 2013;2:98–108.

Karthivashan G, Arulselvan P, Alimon AR, Ismail SI, Fakurazi S. Competing role of bioactive constituents in Moringa oleifera extract and conventional nutrition on the performance of Cobb 500 Broilers. BioMed Research International. 2015;2015:970398.

Ashraf F, Gilani SR. Fatty acids in Moringa oleifera oil. Journal- Chemical Society of Pakistan. 2007;29(4):343-345.

Popoola JO, Obembe OO. Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. Journal of Ethnopharmacology. 2013; 150:682–691. DOI: 10.1016/j.jep.2013.09.043

Pal SK, Mukherjee PK, Saha BP. Studies on the antiulcer activity of Moringa oleifera leaf extract on gastric ulcer models in rats. Phytotherapy Research. 1995;9:463–465. DOI: 10.1002/ptr.2650090618

Rao KS, Mishra SH. Anti-inflammatory and antihepatoxic activities of the roots of Moringa pterygosperma Gaertn. Indian Journal of Pharmcological Science. 1998;60:12–16.

Mahajan S, Banerjee A, Chauhan B, Padh H, Nivsarkar M, Mehta A. Inhibitory effect of N-butanol fraction of Moringa oleifera Lam seeds on ovalbumin-induced airway inflame-mation in a guinea pig model of asthma. International Journal of Toxicology. 2009;28: 519–527. DOI: 10.1177/1091581809345165

Bennett RN, Mellon FA, Foidl N, Pratt JH, Dupont MS, Perkins L, Kroon PA. Profiling glucosinolates and phenolics in vegetative and reproductive tissues of the multi-purpose trees Moringa oleifera L. (horseradish tree) and Moringa stenopetala L. Journal of Agricultural and Food Chemistry. 2003;51:3546–3553. DOI: 10.1021/jf0211480.

Tahiliani P, Kar A. Role of Moringa oleifera leaf extract in the regulation of thyroid hormone status in adult male and female rats. Pharmacological Research. 2000;41:319–323. DOI: 10.1006/phrs.1999.0587

Mbikay M. Therapeutic potential of Moringa oleifera leaves in chronic hyperglycemia and dyslipidemia: A review. Frontiers in Pharmacology. 2012;3:1-12.

Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research. 2007; 21:17–25. DOI: 10.1002/ptr.2023.

Pari L, Kumar NA. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. Journal of Medicinal Food. 2002;5:171–177. DOI: 10.1089/10966200260398206

Halaby MS, Metwally EM, Omar AA. Effect of Moringa oleifera on serum lipids and kidney function of hyperlipidemic rats. Journal of Applied Sciences Research. 2013;9:5189–5198.

Okwari O, Dasofunjo K, Asuk A, Alagwu E, Mokwe C. Anti-hypercholesterolemic and hepatoprotective effect of aqueous leaf extract of Moringa oleifera in rats fed with thermoxidized palm oil diet. Journal of Pharmaceutical and Biological Sciences. 2013; 8:57–62.

Johnson IT. Phytochemicals and cancer. Proceedings of the Nutrition Society. 2007; 66(2):207-215.

Pokorny J. Introduction. In: Pokorny, J., Yanishlieva, N. & Gordon, N.H. Editors. Antioxidant in Foods: Practical Applications. Woodhead Publishing Limited; Cambridge, UK. 2001;1–3.

Charoensin S, Wongpoomchai R. Effect of aqueous extract of Moringa oleifera leaves on quinone reductase activity. Naresuan Phayao Journal. 2012;5(3):101-109.

Santos AF, Argolo AC, Paiva PM, Coelho LC. Antioxidant activity of Moringa oleifera tissue extracts. Phytotherapy Research. 2012;26(9): 1366-1370.

Lopez-Teros V, Ford JL, Green MH, Tang G, Grusak MA, Quihui-Cota L, Muzhingi T, Paz-Cassini M, Astiazaran-Garcia H. Use of a “super-child” approach to assess the vitamin a equivalence of Moringa oleifera leaves, develop a compartmental model for vitamin a kinetics, and estimate vitamin a total body stores in young mexican children. Journal of Nutrition; 2017. DOI: 10.3945/jn.117.256974

Murillo AG, Fernandez ML. The relevance of dietary polyphenols in cardiovascular protection. Current Pharmaceutical Reviews 2017;23:2444–2452. DOI: 10.2174/1381612823666170329144307

Siddhuraju P, Becker K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam) leaves. Journal of Agricultural and Food Chemistry. 2003;51: 2144-2155. DOI: 10.1021/jf020444

Ramakrishnan G, Raghavendran HR, Vinodhkumar R. Suppression of N-nitrosodiethylamine induced hepatocarcino-genesis by silymarin in rats. Chemico-Biological Interactions. 2006;161:104–114.

Bansal AK, Bansal M, Soni G. (). Protective role of vitamin E pre-treatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chemico-Biological Interactions, 2005;156:101–111.

Vasquez-Garzon VR, Arellanes-Robledo J, Garcia-Roman R. Inhibition of reactive oxygen species and pre-neoplastic lesions by quercetin through an antioxidant defense mechanism. Free Radical Research. 2009;43:128–137.

Michotte D, Rogez H, Chirinos R, Mignolet E, Campos D, Larondelle Y. Linseed oil stabilisation with pure natural phenolic compounds. Food Chemistry. 2011;129:1228–1231. DOI: 10.1016/j.foodchem.2011.05.108

Kooltheat N, Sranujit RP, Chumark P, Potup P, Laytragoon-Lewin N, Usuwanthim K. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients. 2014;26:697–710. DOI: 10.3390/nu6020697.

Waterman C, Cheng DM, Rojas-Silva P, Poulev A, Dreifus J, Lila MA, Raskin I. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry. 2014;103:114-122. DOI: 10.1016/j.phytochem.2014.03.028.

Gupta A, Gautam MK, Singh RK, Kumar MV, Rao CHV, Goel RK, Anupurba S. Immunomodulatory effect of Moringa oleifera Lam. extract on cyclophosphamide induced toxicity in mice. Indian Journal of Experimental Biology. 2010;48:1157–1160.

Joung H, Kim B, Park H, Lee K, Kim HH, Sim HC, Do HJ, Hyun CK, Do MS. Fermented Moringa oleifera decreases hepatic adiposity and ameliorates glucose intolerance in high-fat diet-induced obese mice. Journal of Medicinal Food. 2017;20:439–447. DOI: 10.1089/jmf.2016.3860.

World Health Organization WHO independent global high-level commission on NCD; 2018.

Sathya T, Aadarsh P, Deepa V, Balakrishna MP. Moringa oleifera Lam. leaves prevent cyclophosphamide-induced micronucleus and DNA damage in mice. International Journal of Phytomedicine. 2010;2(1):147-154.

Chadamas P, Kupradinun P, Tuntipopipat S, Butryee C. Nutritive evaluation and effect of Moringa oleifera Lam pod on clastogenic potential in the mouse. Asian Pacific Journal of Cancer Prevention. 2010;11:627-632.

Budda S, Butryee C, Tuntipopipat S, Rungsipipat A, Wangnaithum S, Lee JS, Kupradinun P. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pacific Journal of Cancer Prevention. 2011;12:3221-3228.

Khalafalla MM, Abdellatef E, Dafalla HM, Nassrallah A, Aboul-Enein KM, Lightfoot DA, El-Deeb FE, El-Shemyet HA. Active principle from Moringa oleifera Lam leaves effective against two leukemias and a hepatocarcinoma. African Journal of Biotechnology. 2010;9: 8467–8471.

Sreelatha S, Jeyachitra A, Padma PR. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food and Chemical Toxicology. 2011; 49:1270-1275.

Berkovich L, Earon G, Ron I, Rimmon A, Vexler A, Lev-Ari S. Moringa oleifera aqueous leaf extract down-regulates nuclear factor-ĸB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complementary and Alternative Medicine. 2013;13. DOI: 10.1186/1472-6882-13-212

Karim NA, Ibrahim MD, Kntayya SB, Rukayadi Y, Hamid HA, Razis AF. Moringa oleifera Lam: Targeting chemoprevention. Asian Pacific Journal of Cancer Prevention. 2016;17:3675–3686.

Abdull Razis AF, Ibrahim MD, Kantayya SB. Health benefits of Moringa oleifera. Asian Pacific Journal of Cancer Prevention. 2014;15: 8571–8576. DOI: 10.7314/APJCP.2014.15.20.8571

Aja P, Ibiam U, Igwenyi I, Offor C, Orji U. Comparative gas chromatography-mass spectrometry (gc-ms) analysis of chemical compounds of Moringa oleifera leaves and seeds from Abakaliki, Nigeria. Advances in Life Science and Technology. 2014;24:73–9.

Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Research. 2001;22(5):2587–90.

Manikandan P, Vinothini G, Priyadarsini RV, Prathiba D, Nagini S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investigational new drugs. 2011; 29(1):110–7. PMID:19851710

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio S, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A. Signatures of mutational processes in human cancer. Nature. 2013; 500(7463):415-421.

Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K, Chen L, Leroy C, Ramakrishna M, Rance R, Lau KW, Mudie LJ, Varela I, McBride DJ, Bignell GR, Cooke SL, Shlien A, Gamble J, Whitmore I, Maddison M, et al. Mutational processes molding the genomes of 21 breast cancers. Cell. 2012;149: 979–93.

American Cancer Society. Colorectal Cancer Facts & Figures 2017-2019. Atlanta, Ga: American Cancer Society; 2017; 2017a.

Reda F, Borjac J, Fakhouri R, Usta J. Cytotoxic effect of Moringa oleifera on colon cancer cell lines. Acta horticulturae, ISHS; 2017. DOI: 10.17660/ActaHortic.2017.1158.30

Fani S, Kamalidehghan B, Lo KM, Hashim NM, Ahmadipour F, Chow KM. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells. Drug Design, Development and Therapy. 20159:6191–6201. Available:

Ryu DS, Kim SH, Kwon JH, Lee DS. Orostachys japonicus induces apoptosis and cell cycle arrest through the mitochondria-dependent apoptotic pathway in AGS human gastric cancer cells. International Journal of Oncology. 2014;45(1):459– 469.

Al-Asmari AK, Albalawi SM, Athar MT, Khan AQ, Al-Shahrani H, Islam M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PloS ONE. 2015;10:e0135814.

Yamaguchi F, Takata M, Kamitori K, Nonaka M, Dong Y, Sui L, Tokuda M. Rare sugar D-allose induces specific up-regulation of TXNIP and subsequent G1 cell cycle arrest in hepatocellular carcinoma cells by stabilization of p27kip1. International Journal of Oncology. 2008;32(2):377–85. PMID:18202760

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. 2014;360438. DOI: 10.1155/2014/360438

Farmer EE, Davoine C. Reactive electrophile species. Current Opinion in Plant Biology. 2007;10(4):380-386.

Gahring LC, Carlson NG, Kulmer RA, Rogers SW. Neuronal expression of tumor necrosis factor alpha in the OVOUJI fme brain. Neuroimmunomodulation. 1996;3(5):289-303. DOI: 10.1159/000097283

Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proceedings of the National Academy of Sciences USA. 1991;88(10):4220-4224.

Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140(6):1729-1737.

Mahajan SG, Mali RG, Mehta AA. Effect of Moringa oleifera Lam. seed extract on toluene diisocyanate-induced immune-mediated inflammatory responses in rats. Journal of Immunotoxicology. 2007;4(2):85-96. DOI: 10.1080/15476910701337472

Tragulpakseerojn J, Yamaguchi N, Pamonsinlapatham P, Wetwitayaklung P, Yoneyama T, Ishikawa N, Apirakaramwong A. Anti-proliferative effect of Moringa oleifera Lam (Moringaceae) leaf extract on human colon cancer HCT116 cell line. Tropical Journal of Pharmaceutical Research. 2017;16: 371–378. Available: 10.4314/tjpr.v16i2.16

Guon TE, Chung HS. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells. Oncology Letters. 2017;14:1703–1710.

American Cancer Society. About Liver Cancer | 1.800.227.2345 Overview and Types. Last Medical Review: April 1, 2019 Last Revised: April 1, 2019; 2019a.

Sadek KM, Abouzed TK, Abouelkhair R, Nasr S. The chemo-prophylactic efficacy of an ethanol Moringa oleifera leaf extract against hepatocellular carcinoma in rats. Pharmaceutical Biology. 2016;55(1):1458-1466. Available:

Tse C, Shoemaker AR, Adickes J. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Research. 2008;68:3421–3428.

Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell. 2004;116:205–219.

Edlich F, Banerjee S, Suzuki M. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–116.

Sell S. Heterogeneity of alpha-fetoprotein (AFP) and albumin containing cells in normal and pathological permissive states for AFP production: AFP containing cells induced in adult rats recapitulate the appearance of AFP containing hepatocytes in fetal rats. Oncodevelopmental Biology and Medicine. 1980;1(2):93-105.

Becker FF, Sell S. Differences in serum alpha-fetoprotein concentrations during the carcinogenic sequences resulting from exposure to diethylnitrosamine or acetylamino-fluorene. Cancer Research. 1979;39:1437-1442.

Zimmer R, Thomas P. Mutations in the carcinoembryonic antigen gene in colorectal cancer patients: Implications on liver metastasis. Cancer Research. 2001;61:2822–2826.

Saalu LC, Osinubi AA, Akinbami AA, Yama OE, Oyewopo AO, Enaibe BU. Moringa oleifera Lamarck (drumstick) leaf extract modulates the evidences of hydroxyurea-induced testicular derangement. International Journal of Applied Research in Natural Products. 2011;4:32–45.

Pakade V, Cukrowska E, Chimuka L. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science. 2013;109:1–5.

Lukacinova A, Mojzis J, Benacka R, Keller J, Maguth T, Kurila P. Preventive effects of flavonoids on alloxan-induced diabetes mellitus in rats. Acta Veterinaria Brno. 2008; 77:175–182.

Gerhäuser C, Klimo K, Heiss E, Neumann I, Gamal-Eldeen A, Knauft J, Liu GY, Sitthimonchai S, Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutation Research. 2003;523-524,163-172.

Kang YH, Pezzuto JM. Induction of quinone reductase as a primary screen for natural product anticarcinogens. Methods in Enzymology. 2004;382:380-414.

Uda Y, Price KR, Williamson G, Rhodes MJ. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Letters. 1997;120(2):213-216.

Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry. 2009; 284(20):13291-13295.

Hwang ES, Jeffery EH. Induction of quinone reductase by sulforaphane and sulforaphane N-acetylcysteine conjugate in murine hepatoma cells. Journal of Medicinal Food. 2005;8(2): 198-203.

Jung IL, Lee JH, Kang SC. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncology Letters. 2015;10(3):1597-604.

Essawy A, Beeker HM, Abdel-Wahhab KG, Sayad ON, Saber SR. Efficacy of Moringa oleifera aqueous extract in inhibiting tamoxifen®-induced physiological hepatic deterioration in male albino rats. Egyptian Academic Journal of Biological Sciences. 2017;9(2):23- 37.

Vijayarajan M, Pandian MR. Cytotoxicity of methanol and acetone root bark extracts of Moringa concanensis against A549, Hep-G2 and HT-29 cell lines. Journal of Academia and Industrial Research. 2016;5(3):45-49.

Tiloke C, Phulukdaree A, Chuturgoon AA. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complementary and Alternative Medicine. 2013;13(1):1.

van Faassen EE, Bahrami S, Feelisch M, Hogg N, Kelm M, Kim-Shapiro DB, Kozlov AV, Li H, Lundberg JO, Mason R, Nohl H, Rassaf T, Samouilov A, Slama-Schwok A, Shiva S, Vanin AF, Weitzberg E, Zweier J, Gladwin MT. Nitrite as regulator of hypoxic signaling in mammalian physiology. Medicinal Research Reviews. 2009;29(5):683-741. DOI: 10.1002/med.20151

Maiyo FC, Moodley R, Singh M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O-glucoside and 4-(beta-D-glucopyranosyl-1->4-alpha-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anti-Cancer Agents in Medicinal Chemistry. 2016; 16:648–656.
DOI: 10.2174/1871520615666151002110424

Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: Antioxidants or signalling molecules? Biology and Medicine. 2004;36: 838-49.

Granado-Serrano AB, Martin MA, Bravo L, Goya L, Ramos S. Quercetin induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI-3-kinase/Akt and ERK pathways in a human hepatoma cell line (HepG2). The Journal of Nutrition. 2006;136: 2715-21.

Ali FT, Hassan NS, Abdrabou RR. Hepatoprotective and antiproliferative activity of moringinine, chlorogenic acid and quercetin. International Journal of Research in Medical Sciences. 2016;4(4):1147-1153.

Hu JJ, Wang H, Pan CW, Lin MX. Isovitexin alleviates liver injury induced by lipopolysaccharide/d-galactosamine by activating Nrf2 and inhibiting NF-κB activation. Microbial Pathogenesis. 2018;119: 86-92. DOI: 10.1016/j.micpath.2018.03.053

Liedtke C, Bangen JM, Freimuth J, Beraza N, Lambertz D, Cubero FJ, Hatting M, Karlmark KR, Streetz KL, Krombach GA, Tacke F, Gassler N, Riethmacher D, Trautwein C. Loss of caspase-8 protects mice against inflammation-related hepatocarcinogenesis but induces non-apoptotic liver injury. Gastroenterology. 2011;141:2176–2187.

Moustafa EM, Abdel-Rafei MK, Thabet NM, Hasan HF. Moringa oleifera leaf ethanolic extract subsidized by low doses of gamma irradiation modulates the thioacetamide induced fibrotic signs in liver of albino rats. Pakistan Journal of Zoology. 2015;47(3):793-802.

American Cancer Society. About Pancreatic Cancer, Overview and Type. | 1.800.227.2345. Last Medical Review: February 11, 2019 Last Revised: February 11, 2019; 2019b.

Winter JM, Brody JR, Abrams RA, Lewis NL, Yeo CJ. Chapter 49: Cancer of the Pancreas. In: DeVita VT, Lawrence TS, Rosenberg SA, eds. DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology. 10th ed. Philadelphia, Pa: Lippincott Williams & Wilkins; 2015.

Boreddy SR, Pramanik KC, Srivastava SK. Pancreatic tumor suppression by benzyl isothiocyanate is associated with inhibition of PI3K/AKT/FOXO pathway. Clinical Cancer Research. 2011;17(7):1784–1795. DOI: 10.1158/1078-0432.CCR-10-1891 Published April 2011

Sahu RP, Srivastava SK. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. Journal of the National Cancer Institute. 2009;101: 176–93.

Zhang R, Loganathan S, Humphreys I, Srivastava SK. Benzyl isothiocyanate-induced DNA damage causes G2/M cell cycle arrest and apoptosis in human pancreatic cancer cells. Journal of Nutrition. 2006;136:2728–34.

Stan SD, Singh SV, Whitcomb DC, Brand RE. Phenethyl isothiocyanate inhibits proliferation and induces apoptosis in pancreatic cancer cells In Vitro and in a MIAPaca2 xenograft animal model. Nutrition and Cancer. 2014; 66(4):747–755. DOI: 10.1080/01635581.2013.795979

Frunze P, Hamed D, Abdo H, Timothy S. Targeted therapy for lung cancer. Anti-Cancer Drugs. 2012;23:1016-1021. DOI: 10.1097/CAD.0b013e3283585149

Cooper GM. The cell. In: A molecular approach. Boston, USA: Sunderland: Sinauer Associates; 2000.

Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A, Biswal S. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radical Biology and Medicine. 2009;46:443-453. DOI: 10.1016/j.freeradbiomed.2008.10.040

Lewis KN, Mele J, Hayes JD, Buffenstein R. Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integrative and Comparative Biology. 2010;50:829-843. DOI: 10.1093/icb/icq034

Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267: 1456-1462. DOI: 10.1126/science.7878464

Bertram JS. The molecular biology of cancer. Molecular Aspects of Medicine. 2001;21:167-223.

Sreelatha S, Padma PR. Modulatory effects of Moringa oleifera extracts against hydrogen peroxide-induced cytotoxicity and oxidative damage. Human and Experimental Toxicology. 2011;30:1359-1368.

Radhakrishna Pillai G, Srivastava AS, Hassanein TI, Chauhan DP, Carrier E. Induction of apoptosis in human lung cancer cells by curcumin. Cancer Letters. 2004;208: 163-170. DOI: 10.1016/j.canlet.2004.01.008

D’Amours D, Sallmann FR, Dixit VM, Poirier GG. Gain-of-function of poly (ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: Implications for apoptosis. Journal of Cell Science. 2001;114:3771-3778.

Pagano A, Pitteloud C, Reverdin C, Metrailler-Ruchonnet I, Donati Y, Argiroffo CB. Poly (ADP-ribose) polymerase activation mediates lung epithelial cell death in vitro but is not essential in hyperoxia-induced lung injury. American Journal of Respiratory Cell and Molecular Biology. 2005;33:555-564. DOI: 10.1165/rcmb.2004-0361OC

American Cancer Society. About Breast Cancer | 1.800.227.2345 Breast Cancer Basics. | 1.800.227.2345. Last Medical Review: August 1, 2017 Last Revised: September 21, 2017; 2017b.

Lacroix M, Toillon RA, Leclercq G. p53 and breast cancer, an update. Endocrine-related Cancer. 2006;13(2):293–325. PMID:16728565

Al-Sharif I, Remmal A, Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13(1):600.

Vijayakumar S, Bhuvaneshwari V, Sumathi A. Antioxidant and anticancer potential of methanolic leaf extract of Moringa concanensis Nimmo against human breast cancer cell line MCF-7. International Journal of Pharmacognosy and Phytochemical Research. 2017;9(6):750-754.

Adebayo IA, Arsad H, Samian MR. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts. African Journal of Traditional Complementary & Alternative Medicines. 2017;14:282–287. Available: ajtcam.v14i2.30.

American Cancer Society. Cancer Facts and Figures 2018. Atlanta, GA: American Cancer Society; 2018.

Bose CK. Possible role of Moringa oleifera Lam. Root in epithelial ovarian cancer. Medscape General Medicine. 2007;9(1):26.

Bose C. Alterations in female reproductive organs of cyclic rats treated with aqueous extract of Moringa oleifera lam: Indication of possible role in epithelial ovarian cancer. Chemoprevention and Biological Therapies. 2008;1(7 Suppl):A56. DOI: 10.1158/1940-6207.PREV-08-A56 Published November 2008

Bose CK. Role of nerve growth factor, follicle stimulating hormone receptor and epithelial ovarian cancer. Reproductive BioMedicine Online. 2005;11:194–197.

Ray K, Hazra R, Debnath PK, Guha D. Role of 5-hydroxytryptamine in Moringa oleifera induced potentiation of pentobarbitone hypnosis in albino rats. Indian Journal of Experimental Biology. 2004;42:632–635.

Selman A, Yazigi R, Moyano L, Weinstein-Oppenheimer C, Lara HE, Romero C. Nerve growth factor and its high-affinity receptor trkA participate in the control of vascular endothelial growth factor expression in epithelial ovarian cancer. Gynecologic Oncology. 2007;104(1):168-175

Kalkunte S, Swamy N, Dizon DS, Brard L. Benzyl isothiocyanate (BITC) induces apoptosis in ovarian cancer cells in vitro. Journal of Experimental Therapeutics and Oncology. 2006;5(4):287-300.

Ozten N, Vega K, Liehr J, Huang X, Horton L, Cavalieri EL, Rogan EG, Bosland MC. Role of estrogen in androgen-induced prostate carcinogenesis in NBL rats. Hormones and Cancer. 2019;10(2-3):77-88. DOI: 10.1007/s12672-019-00360-7

Xiao D, Srivastava SK, Lew KL, Zeng Y, Hershberger P, Johnson CS, Trump DL, Singh SV. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis. 2003;24:891–897.

Gao N, Budhraja A, Cheng S, Liu EH, Chen J, Yang Z, Chen D, Zhang Z, Shi X. Phenethyl isothiocyanate exhibits antileukemic activity in vitro and in vivo by inactivation of Akt and activation of JNK pathways. Cell Death and Disease. 2011;2:e140.

Kou X, Li B, Olayanju JB, Drake JM, Chen N. Nutraceutical or pharmacological potential of Moringa oleifera Lam. Nutrients. 2018;10:343. DOI: 10.3390/nu10030343

Zhang J, Grek C, Ye ZW, Manevich Y, Tew KD, Townsend DM. Pleiotropic functions of glutathione S-transferase P. Advances in Cancer Research. 2014;122:143–175.

Clementi M, Sánchez C, Benitez DA, Contreras HR, Huidobro C, Cabezas J, Acevedo C, Castellón EA. Gonadotropin releasing hormone analogs induce apoptosis by extrinsic pathway involving p53 phosphory-lation in primary cell cultures of human prostatic adenocarcinomas. Prostate. 2009; 69(10):1025-33. DOI: 10.1002/pros.20954

Dilawar S, Shah A, Hussain S, Sajjad M, Khan S. Healing effect of Moringa oleifera Lam against UV-B induced psoriasis form changes in rats. Biochemistry and Pharmacology. 2017;6:1. DOI: 10.4172/2167-0501.1000225

Thurber MD, Fahey JW. Adoption of Moringa oleifera to combat under-nutrition viewed through the lens of the “Diffusion of Innovations” theory. Ecology of Food and Nutrition. 2009;48:212-225.

Amaglo NK, Bennett RN, LoCurto RB, Rosa EA, Lo Turco V, Giuffrida A, LoCurto A, Crea F, Timpo GM. Profiling selected phyto-chemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L. grown in Ghana. Food Chemistry. 2010;122: 1047-1054.

Purwal L, Pathak AK, Jain UK. In vivo anticancer activity of the leaves and fruits of Moringa oleifera on mouse melanoma. Pharmacology Online. 2010;1:655-665.

Gismondi A, Canuti L, Impei S, Marco GD, Kenzo M, Colizzi V, Canini A. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells. International Journal of Oncology. 2013;43:956–964. DOI: 10.3892/ijo.2013.2001

Bharali R, Tabassum J, Azad MRH. Chemomodulatory effect of Moringa oleifera, Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pacific Journal of Cancer Prevention. 2003;4(2):131-140.