Main Article Content



The addition of copper (Cu) can decrease the toxicity of the most usable element antimony (Sb). Concentration-dependent thermodynamic, microscopic structural and transport properties of Cu-Sb melt at different temperatures were examined using the quasi-lattice theory of mixing. Moelwyn-Hughes’s approach was implemented for the computation of viscosity. Liquid Cu-Sb shows the segregating nature in the Sb rich region and the ordering nature in the Cu rich region at the temperature range of 1190-1490 K. The viscosity of the respective alloy decreases with an increase in temperature.

Antimony, quasi lattice test, segregating nature, liquid alloy, mixing properties, copper-based alloy.

Article Details

How to Cite
GAUTAM, M. (2020). ASSESSMENT OF MIXING PROPERTIES OF LIQUID Cu-Sb ALLOY AT DIFFERENT TEMPERATURES. Asian Journal of Advances in Research, 5(4), 48-61. Retrieved from
Original Research Article


Yadav SK, Lamichhane S, Jha LN, Adhikari NP, Adhikari D. Physics and chemistry of liquids, mixing behavior of Ni-Al melt at 1873 K. 2016;54:370. DOI:

Bhatia AB, Singh RN. Thermodynamic properties of compound forming molten alloys in a weak interaction approximation. Physics and Chemistry of Liquids. 1982;11:343. DOI:

Budai I, Benko MZ, Kaptay G. Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys. Materials Science Forum. 2007;537-538:489. DOI:

Koirala I, Jha IS, Singh BP, Adhikari D. Thermodynamic, transport and surface properties in In-Pb liquid alloys. Physica B. 2013;423:49. DOI:

Vora AM. Study of thermodynamic properties of liquid binary alloys by a pseudopotential method. Journal of Engineering Physics and Thermophysics. 2010;83. DOI:

Anusionwu BC, Llo-Okeke EO. Segregation and surface properties of In-Zn liquid alloys. Physics and Chemistry of Liquids. 2006;43: 25. DOI:

Adhikari D, Yadav SK, Jha LN. Thermo-physical properties of Mg-Tl melt. Journal of Basic and Applied Research International. 2015;9:103. Available:

Hoc NQ, Viet LH, Dung NT. On the melting of defective FCC interstitial alloy c-FeC under pressure up to 100 GPa. Journal of Electronic Materials. 2019;49:910. DOI:

Dung NT, Phuong NT. Understanding the heterogeneous kinetics of Al nanoparticles by simulations method. Journal of Molecular Structure. 2020;1218:1. DOI: 1016/j.molstruc.2020.128498

Dung NT, Phuong NT. Factors affecting the structure, phase transition and crystallization process of AlNi nanoparticles. Journal of Alloys and Compounds. 2020;812:1. DOI:

Dung NT, Kien PH, Phuong NT. Simulation on the factors affecting the crystallization process of FeNi alloy by molecular dynamics. ACS Omega. 2019A. DOI:

Dung NT, Phuong NT. Molecular dynamic study on factors influencing the structure, phase transition and crystallization process of NiCu6912 nanoparticle. Materials Chemistry and Physics. 2020;250:1. DOI:

Dung NT. Influence of impurity concentration, atomic number, temperature and tempering time on microstructure and phase transformation of Ni1-xFex (x = 0:1, 0.3, 0.5) nanoparticles. Modern Physics Letters B. 2018;1850204:1. DOI:

Tuan TQ, Dung NT. Effect of heating rate, impurity concentration of Cu, atomic number, temperatures, time annealing temperature on the structure, crystallization temperature and crystallization process of Ni1-xCux bulk; x = 0.1, 0.3, 0.5, 0.7. International Journal of Modern Physics B. 2018;32:1830009-1. DOI:

Filella M, Belzile N, Chen YW. Antimony in the environment: A review focused on natural waters I. Occurrence, Earth-Science Reviews. 2002;57:125. DOI:

Cooper RG, Harrison AP. The exposure to and health effects of antimony. Indian Journal of Occupational and Environmental Medicine. 2009;13:3. DOI:

Grund SC, Hanusch K, Breunig HJ, Wolf HU. Antimony and antimony compounds. Encyclopedia of Industrial Chemistry. 2012;4:11. DOI:

Dillis S, Meert AVH, Leeming P, Shortland A, Gobejishvili G, Abramishvili M, Degryse P. Antimony as a raw material in ancient metal and glass making: Provenancing Georgian LBA metallic Sb by isotope analysis. Star: Science & Technology of Archaeological Research; 2019. DOI:

Vargas B, Ramos E, Gutierrez EP, Alonso JC, Ibarra DS. A direct bandgap copper-antimony halide perovskite. Journal of the American Chemical Society. 2017;139:9116. DOI:

Dupont D, Arnout S, Jones PT, Binnemans K. Antimony recovery from end-of-life products and industrial process residues: A critical review. Journal of Sustainable Metallurgy. 2016;2:79. DOI:

Hansell C. All manner of Antimony. Nature Chemistry. 2015;7:88. DOI:

Senkara J, Wlosinski WK. Surface phenomena at the interfaces of the tungsten-liquid Cu-Sb alloy system. Journal of Materials Science. 1985;20:3597. DOI:

Matsuura M, Suzuki K. Thermoelectric power of liquid Cu-Sb and Ag-Sb alloy systems. The Philosophical Magazine. 1975;31:969. DOI:

Gierlotka W, Handzlik DJ. Thermodynamic description of the Cu-Sb binary system. Journal of Alloys and Compounds. 2009;484:172. DOI:

Furtauer S, Flandorfer H. A new experimental phase diagram investigation of Cu-Sb. Monatshefte fur Chemie. 2012;143:1275. DOI:

Cheng J, Grobner J, Hort N, Kainer KU, Fetzer RS. Measurement and calculation of the viscosity of metals – A review of the current status and developing trends. Measurement Science and Technology. 2014;25. DOI:

Smithells CJ. The physical properties of liquid metals. Smithells Metals Reference Book. 1992;14-6.

Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelly KK. Selected values of the thermodynamic properties of binary alloys; 1973.

Yadav SK, Jha LN, Jha IS, Singh BP, Koirala RP, Adhikari D. Prediction of thermodynamic and surface properties of Pb-Hg liquid alloys at different temperatures. Philosophical Magazine; 2016. DOI: