Published: 2021-10-09

Page: 1085-1097


Department of Pharmacology, CPS Puri, Odisha, India.


Gayatri College of Pharmacy, Sambalpur, Odisha, India.


Gayatri College of Pharmacy, Sambalpur, Odisha, India.

*Author to whom correspondence should be addressed.


Micro/nanobubbles (MNBs) refer to structures that have a core separated from the periphery and is composed of gas. They are sized at the micro  or nano level . The shell of an MNB distinguishes the external environment and the core that includes gases or drugs therein . These bubbles not only serve as transporters that deliver gases or drugs into the body  but also act as contrast agents by contrasting vibration patterns of surrounding tissues with blood vessels by ultrasound. nanobubbles are less affected by changes in volume concentration than microbubbles . Cavitation, which is one of the characteristics of bubbles in an ultrasonic field, allows them to be used as an ultrasonic contrast medium. The Present Review Focus The various advantages of Nano Bubbles when utilised and Designed for Therapeutic Purposes.

Keywords: Nano bubbles, therapeutic agent, drug transporter, bubble structure

How to Cite

RAY, B., DAS, S. N., & RAUT, S. (2021). NANO BUBBLES: CONCEPT & RECENT ADVANCES AS THERAPEUTIC AGENT. Asian Journal of Advances in Research, 4(1), 1085–1097. Retrieved from


Download data is not yet available.


Shin S, Han D, Park MC, Mun JY, Choi J, Chun H, Kim S, Hong JW. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci. Rep. 2017;7:1–8. [CrossRef] [PubMed]

Choi J, Tung SH, Wang NS, Reipa V. Small-angle neutron scattering measurement of silicon nanoparticle size. Nanotechnology. 2008;19:085715. [CrossRef] [PubMed]

Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE. 2013;8:e65339. [CrossRef] [PubMed]

Liu CF, Zhou J, Chen XR, Yu J. Drug-loaded nanobubbles for ultrasound-mediated antitumor treatment. J. Biol. Regul. Homeost. Agents. 2018;32:923–92.

Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, Hong JW, Choi J. Oxygen-carrying micro/nanobubbles: Composition, synthesis techniques and potential prospects in phototriggered theranostics. Molecules. 2018;23:2210. [CrossRef]

Kwan JJ, Kaya M, Borden MA, Dayton PA. Theranostic oxygen delivery using ultrasound and microbubbles. Theranostics. 2012;2:1174. [CrossRef]

Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: The key role of perfluorochemicals. Angew. Chem. Int. Ed. Engl. 2003;42:3218–3235. [CrossRef

Kuo TT, Wang CH, Wang JY, Chiou HJ, Fan CH, Yeh CK. Concurrent osteosarcoma theranostic strategy using contrast-enhanced ultrasound and drug-loaded bubbles. Pharmaceutics. 2019;11:223. [CrossRef]

Bjanes T, Kotopoulis S, Murvold ET, Kamceva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and microbubble-assisted gemcitabine delivery to pancreatic cancer cells. Pharmaceutics. 2020;12:141. [CrossRef].

Nishimura K, Yonezawa K, Fumoto S, Miura Y, Hagimori M, Nishida K, Kawakami S. Application of direct sonoporation from a defined surface area of the peritoneum: Evaluation of transfection characteristics in mice. Pharmaceutics. 2019;11:244. [CrossRef].

Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int. J. Nanomed. 2018;13:6049–6058. [CrossRef] [PubMed.

Tagalakis AD, He L, Saraiva L, Gustafsson KT, Hart SL. Receptor-targeted liposomepeptide nanocomplexes for siRNA delivery. Biomaterials. 2011;32:6302–6315. [CrossRef].

Kim YR, Hwang J, Koh HJ, Jang K, Lee JD, Choi J, Yang CS. The targeted delivery of the c-Src peptide complexed with schizophyllan to macrophages inhibits polymicrobial sepsis and ulcerative colitis in mice. Biomaterials. 2016;89:1–13. [CrossRef] [PubMed].

Forsberg F, Rawool NM, Merton DA, Liu JB, Goldberg BB. Contrast enhanced vascular three-dimensional ultrasound imaging. Ultrasonics. 2002;40:117–122. [CrossRef].

Abenojar EC, Bederman I, Leon AC, Zhu J, Hadley J, Kolios MC, Exner AA. Theoretical and experimental gas volume quantification of micro- and nanobubble ultrasound contrast agents. Pharmaceutics. 2020;12:208. [CrossRef].

Vanhille C. Numerical simulations of stable cavitation bubble generation and primary Bjerknes forces in a three-dimensional nonlinear phased array focused ultrasound field. Ultrason. Sonochem. 2020;63: 104972. [CrossRef].

De Matos MBC, Deckers R, van Elburg B, Lajoinie G, de Miranda BS, Versluis M, Schiffelers R, Kok RJ. Ultrasound-sensitive liposomes for triggered macromolecular drug delivery: Formulation and in vitro characterization. Front. Pharmacol. 2019;10:1463. [CrossRef.

De Matos MBC, Deckers R, van Elburg B, Lajoinie G, de Miranda BS, Versluis M, Schiffelers R, Kok R.J. Ultrasound-sensitive liposomes for triggered macromolecular drug delivery: Formulation and in vitro characterization. Front. Pharmacol. 2019;10: 1463. [CrossRe.

Negishi Y, Yamane M, Kurihara N, Endo-Takahashi Y, Sashida S, Takagi N, Suzuki R, Maruyama K. Enhancement of blood-brain barrier permeability and delivery of antisense oligonucleotides or plasmid DNA to the brain by the combination of bubble liposomes and highintensity focused ultrasound. Pharmaceutics. 2015;7:344–3.

Negishi Y, Yamane M, Kurihara N, Endo-Takahashi Y, Sashida S, Takagi N, Suzuki R, Maruyama K. Enhancement of blood-brain barrier permeability and delivery of antisense oligonucleotides or plasmid DNA to the brain by the combination of bubble liposomes and highintensity focused ultrasound. Pharmaceutics. 2015;7:344–362.

Omata D, Maruyama, T, Unga, J, Hagiwara, F, Munakata, L, Kageyama, S, Shimaa, T, Suzukia, Y, Maruyamab, K, Suzukia, R. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J. Control. Release. 2019;311–312:65–73. [CrossRef] [PubMed].

Matsuki, N, Ichiba, S, Ishikawa, T, Nagano, O, Takeda M, Ujike Y, Yamaguchi T. Blood oxygenation using microbubble suspensions. Eur. Biophys. J. Biophy. 2012;41:571–578. [CrossRef] [PubMed

Stride E, Edirisinghe M. Novel microbubble preparation technologies. Soft Matter. 2008, 4, 2Chong, W.K, Papadopoulou, V, Dayton, P.A. Imaging with ultrasound contrast agents: Current status and future. Abdom. Radiol. 2018;43:762–772. [CrossRef.

Chong WK, Papadopoulou V, Dayton PA. Imaging with ultrasound contrast agents: Current sPlesset, M.S, Sadhal, S.S. On the stability of gas-bubbles in liquid-gas solutions. Appl. Sci. Res. 1982;38:133–141. [CrossReftatus and future. Abdom. Radiol. 2018;43:762–772. [CrossRef.] Dressaire, E, Bee, R, Bell, D.C, Lips, A, Stone, H.A. Interfacial polygonal nanopatterning of stable microbubbles. Science. 2008;320:1198–1201. [CrossRef].

Dressaire E, Bee R, Bell DC, Lips A, Stone HA. Interfacial polygonal nanopatterning of stable microbubbles. Science. 2008;320:1198–1201. [CrossRef].

Dressaire E, Bee R, Bell DC, Lips A, Stone HA. Interfacial polygonal nanopatterning of stable microbubbles. Science. 2008;320:1198–1201. [CrossRe.

Rovers TA, Sala G, van der Linden E, Meinders MB. Effect of temperature and pressure on the stability of protein microbubbles. ACS Appl. Mater Interfaces. 2016;8:333–340. [CrossRef.

Koppolu S, Chitnis PV, Mamou J, Allen JS, Ketterling JA. Correlation of rupture dynamics to the nonlinear backscatter response from polymer-shelled ultrasound contrast agents. IEEE Trans. Ultrason. Ferroelectr Freq. Control. 2015;62:494–501. [CrossRef.

Goyal G, Hwang J, Aviral J, Seo Y, Jo Y, Son J, Choi J. Green synthesis of silver nanoparticles using beta-glucan, and their incorporation into doxorubicin-loaded water-in-oil nanoemulsions for antitumor and antibacterial applications. J. Ind. Eng. Chem. 2017;47:179– 186. [CrossRef.

Liu J, Zhang B, Li M Zhou M, Li F, Huang X, Pan M, Xue L, Yan F. Preparation and characterization of a novel silicon-modified nanobubble. PLoS ONE. 2017;12:e0178031. [CrossRef].

Cox DJ, Thomas JL. Ultrasound-induced dissolution of lipid-coated and uncoated gas bubbles. Langmuir. 2010;26:14774–14781. [CrossRef] [PubMed].

Cox DJ, Thomas JL. Ultrasound-induced dissolution of lipid-coated and uncoated gas bubbles. Langmuir. 2010;26:14774–14781. [CrossRef] [PubMed].

Cox DJ, Thomas JL. Temperature-dependent biphasic shrinkage of lipid-coated bubbles in ultrasound. Langmuir. 2013;29:4485–4491. [CrossRef] [PubMed.

Ekemen Z, Chang H, Ahmad Z, Bayram C, Rong Z, Denkbas EB, Stride E, Vadgama P, Edirisinghe M. Fabrication of biomaterials via controlled protein bubble generation and manipulation. Biomacromolecules. 2011;12:4291–4300. [CrossRef]

Yang H, Shen X, Yan J, Xie X, Chen Z, Li T, Li S, Qin X, Wu C, Liu Y. Charge-reversalfunctionalized PLGA nanobubbles as theranostic agents for ultrasonic-imaging-guided combination therapy. Biomater. Sci. 2018;6:2426–2439. [CrossRef.

Bosca F, Bielecki PA, Exner AA, Barge A. Porphyrin-loaded pluronic nanobubbles: A new US-activated agent for future theranostic applications. Bioconjug. Chem. 2018;29:234–240. [CrossRef].

Seo Y, Kim JE, Jeong Y, Lee KH, Hwang J, Hong J, Park H, Choi J. Engineered nanoconstructs for the multiplexed and sensitive detection of high-risk pathogens. Nanoscale. 2016;8:1944–1951. [CrossRef]

Seo Y, Hwang J, Lee E, Kim YJ, Lee K, Park C, Choi Y, Jeon H, Choi J. Engineering copper nanoparticles synthesized on the surface of carbon nanotubes for anti-microbial and anti-biofilm applications. Nanoscale. 2018;10:15529–15544. [CrossRef]

Hernandez C, Nieves L, de Leon AC, Advincula R, Exner AA. Role of surface tension in gas nanobubble stability under ultrasound. ACS Appl. Mater. Interfaces. 2018;10:9949–9956. [CrossRef]

Ljunggren, S, Eriksson JC. The lifetime of a colloid-sized gas bubble in water and the cause of the hydrophobic attraction. Colloid Surf. A. 1997, 129, 151–155. [CrossRef] Pharmaceutics 2020, 12, 1089 11 of 12

Johnson BD, Cooke RC. Generation of stabilized microbubbles in seawater. Science. 1981;213:209–211. [CrossRef] [PubMed]

Kabalnov A, Klein D, Pelura T, Schutt E, Weers J. Dissolution of multicomponent microbubbles in the bloodstream: 1. Theory. Ultrasound Med. Biol. 1998;24:739–749. [CrossRef]

Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv. Drug Deliv. Rev. 2001;47:209–228. [CrossRef]

Riess JG. Oxygen carriers (“blood substitutes”)—Raison d’Etre, chemistry, and some physiology. Chem. Rev. 2001;101:2797–2919. [CrossRef] [PubMed]

Krafft MP, Riess JG. Perfluorocarbons: Life sciences and biomedical uses—Dedicated to the memory of Professor Guy Ourisson, a true renaissance man. J. Polym. Sci. Pol. Chem. 2007;45:1185–1198. [CrossRef]

Haiss F, Jolivet R, Wyss MT, Reichold J, Braham NB, Scheffold F, Krafft MP, Weber B. Improved in vivo two-photon imaging after blood replacement by perfluorocarbon. J. Physiol. 2009;587:3153–3158. [CrossRef]

Szijjarto C, Rossi S, Waton G, Krafft MP. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: Osmotic effect versus interfacial film stabilization. Langmuir. 2012;28:1182–1189. [CrossRef]

German SR, Edwards MA, Chen Q, White HS. Laplace pressure of individual H2 nanobubbles from pressure-addition electrochemistry. Nano Lett. 2016;16:6691–6694. [CrossRef]

Chauhan S, Kaur M, Kumar K, Chauhan MS. Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium. J. Chem. 2014;78:175–181. [CrossRef]

Fumoto S, Kawakami S, Ito Y, Shigeta K, Yamashita F, Hashida M. Enhanced hepatocyteselective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation. Mol. Ther. 2004;10:719–729. [CrossRef]

Ogawa K, Fuchigami Y, Hagimori M, Fumoto S, Miura Y, Kawakami S. Efficient gene transfection to the brain with ultrasound irradiation in mice using stabilized bubble lipopolyplexes prepared by the surface charge regulation method. Int. J. Nanomed. 2018;13:2309–2320. [CrossRef] [PubMed]

Jain, A.K, Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019;47:524–539. [CrossRef] [PubMed]

Hamamoto, S, Takemura, T, Suzuki, K, Nishimura, T. Effects of pH on nano-bubble stability and transport in saturated porous media. J. Contam. Hydrol. 2018;208:61–67. [CrossRef] [PubMed]

Bhattacharjee S. DLS and zeta potential—What they are and what they are not? J. Control. Release. 2016;235:337–351. [CrossRef] [PubMed]

Uchida T, Liu S, Enari M, Oshita S, Yamazaki K, Gohara K. Effect of NaCl on the lifetime of micro- and nanobubbles. Nanomaterials. 2016;6:31. [CrossRef]

Kelsall GH, Tang SY, Yurdakul S, Smith AL. Electrophoretic behaviour of bubbles in aqueous electrolytes. J. Chem. Soc. Faraday Trans. 1996;92:3887–3893. [CrossRef]

Takahashi M. Zeta potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface. J. Phys. Chem. B. 2005;109:21858–21864. [CrossRef]

Shekhar, H, Smith, N.J, Raymond, J.L, Holland, C.K. Effect of temperature on the size distribution, shell properties, and stability of Definity®. Ultrasound Med. Biol. 2018;44:434–446. [CrossRef]

Unga J, Kageyama S, Suzuki R, Omata D, Maruyama K. Scale-up production, characterization and toxicity of a freeze-dried lipid-stabilized microbubble formulation for ultrasound imaging and therapy. J. Liposome Res. 2020;30:297–304. [CrossRef]

Unga J, Omata D, Kudo N, Ueno S, Munakata L, Shima T, Maruyama K, Suzuki R. Development and evaluation of stability and ultrasound response of DSPC-DPSG-based freeze-dried microbubbles. J. Liposome Res. 2019;29:368–374. [CrossRef]

Ojha T, Pathak V, Drude N, Weiler M, Rommel D, Rutten S, Geinitz B, van Steenbergen MJ, Storm G, Kiessling F, et al. Shelf-life evaluation and lyophilization of PBCA-based polymeric microbubbles. Pharmaceutics. 2019;11:433. [CrossRef] [PubMed]

Weijs JH, Seddon JR, Lohse D. Diffusive shielding stabilizes bulk nanobubble clusters. ChemPhysChem 2012;13:2197–2204. [CrossRef] [PubMed] Pharmaceutics. 2020;12:1089 12 of 12

Ammi AY, Cleveland RO, Mamou J, Wang GI, Bridal SL, O’Brien WD, Jr. Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2006;53:126–136. [CrossRef] [PubMed]

Tezel A, Mitragotri S. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis. Biophys. J. 2003;85:3502–3512. [CrossRef]

Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature. 2003;423:153–156. [CrossRef]

Sponer J. Dependence of the cavitation threshold on the ultrasonic frequency. Czech J. Phys. 1990;40: 1123–1132. [CrossRef]

Pouliopoulos AN, Li CQ, Tinguely M, Garbin V, Tang MX, Choi JJ. Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions. J. Acoust. Soc. Am. 2016;140:2469–2480. [CrossRef]

Sirsi S, Feshitan J, Kwan J, Homma S, Borden M. Effect of microbubble size on fundamental mode high frequency ultrasound imaging in mice. Ultrasound Med. Biol. 2010;36:935–948. [CrossRef]

Caskey CF, Stieger SM, Qin S, Dayton PA, Ferrara KW. Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. J. Acoust. Soc. Am. 2007;122:1191–1200. [CrossRef]

Duan L, Yang L, Jin J, Yang F, Liu D, Hu K, Wang Q, Yue Y, Gu N. Micro/nano-bubbleassisted ultrasound to enhance the EPR effect and potential theranostic applications. Theranostics. 2020;10:462–483. [CrossRef]

Garg S, Thomas AA, Borden MA. The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence. Biomaterials. 2013;34:6862–6870. [CrossRef] [PubMed]

Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016;105:460– 475. [CrossRef] [PubMed]

Huang ZG, Lv FM, Wang J, Cao SJ, Liu ZP, Liu Y, Lu WY. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability. Int. J. Pharm. 2019;556:217–225. [CrossRef] [PubMed]

Kenworthy AK, Hristova K, Needham D, McIntosh TJ. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly (ethylene glycol). Biophys. J. 1995;68:1921–1936. [CrossRef]

Needham D, Kim DH. PEG-covered lipid surfaces: Bilayers and monolayers. Colloids Surf. B Biointerfaces. 2000;18:183–195. [CrossRef]

Blume G, Cevc G, Crommelin MD, Bakker-Woudenberg IA, Kluft C, Storm G. Specific targeting with poly(ethylene glycol)-modified liposomes: Coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim. Biophys. Acta. 1993; 1149:180–184. [CrossRef.

Naghibzadeh M, Adabi M, Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers and Polymers. 2014;15(4):767-77

Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG, Cancer drug resistance: an evolving paradigm, Nature Reviews Cancer, 2013;13(10):714-26.

F, Pridgen EM, Langer R, Farokhzad OC. Nanoparticle technologies for cancer therapy. Drug delivery: Springer; 2010: 55-86.

Langer R, Drug delivery and targeting. Nature. 1998;392.6679: 5-10,.

Hobbs SK. et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA. 1998;95:4607–4612. DOI: 1016/S0002-9440(10)65006-7

Tsai KC, LZ.K, Lin WL, Shieh MJ, Hwang LH, Chen WS. Antiangiogenic gene therapy on hepatocellular carcinoma using endostatin and sonoporation in vivo. Biomed Eng Appl Basis Commun. 2010;22(1):71-79.

Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv. Enzyme Regul. 2001;41:18–207. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted.

Nyborg WMD. Biophysical implications of bubble dynamics. Appl Sci Res. 1982;38(1):17.

Tranquart F, Mercier L, Frinking P, Gaud E, Arditi M, Perfusion quantification in contrast-enhanced ultrasound (CEUS)--ready for research projects and routine clinical use, Ultraschall in der Medizin (Stuttgart, Germany: 1980). 2012;33:S31-8.