ENHANCEMENT IN MECHANICAL STRENGTH OF SLOW-COOLED QUADRUPLE PEROVSKITE CaCu3Ti4O12 BY MICROWAVE-ASSISTED HEATING, AND RAPID THERMAL COOLING PROCESS

PDF

Published: 2022-07-05

Page: 913-920


POOJA Y. RAVAL *

Department of Physics, C. U. Shah University, Wadhwan City, Surendranagar 363030, India.

SHREY K. MODI

Department of Environment Engineering, L. D. Engineering College, Ahmedabad 380015, India.

DOLLY J. PAREKH

Department of Physics, Saurashtra University, Rajkot 360005, India.

NIKETA P. JOSHI

Department of Physics, Saurashtra University, Rajkot 360005, India.

URMILA M. MESHIYA

Department of Physics, Saurashtra University, Rajkot 360005, India.

KUNAL B. MODI

Department of Physics, Saurashtra University, Rajkot 360005, India.

*Author to whom correspondence should be addressed.


Abstract

The results of microwave-assisted heating and quenching process-induced modifications in elastic properties and lattice energy of slow-cooled microcrystalline CaCu3Ti4O12.quadruple perovskite are presented. The X-ray density and mean atomic weight-based semi-empirical method was used to calculate longitudinal wave velocity that was further used to compute Debye temperature, several elastic constants, shear wave, and average sound velocities. The magnitude of elastic constants for microwave-assisted and quenched samples was found to enhance compared to the slow-cooled sample. The lattice energy values for microcrystalline ceramics were found to be smaller when compared with the lattice energy values for monocrystalline counterparts computed from three distinct approaches. It was found that the thermal history-induced modifications in structural and microstructural parameters govern the mechanical strength of the material.

Keywords: Calcium-copper-titanate, mechanical properties, thermal history


How to Cite

RAVAL, P. Y., MODI, S. K., PAREKH, D. J., JOSHI, N. P., MESHIYA, U. M., & MODI, K. B. (2022). ENHANCEMENT IN MECHANICAL STRENGTH OF SLOW-COOLED QUADRUPLE PEROVSKITE CaCu3Ti4O12 BY MICROWAVE-ASSISTED HEATING, AND RAPID THERMAL COOLING PROCESS. Asian Journal of Advances in Research, 5(1), 913–920. Retrieved from https://mbimph.com/index.php/AJOAIR/article/view/3079

Downloads

Download data is not yet available.

References

Subramanian MA, Li D, Duan N, Reisner BA, Sleight AW. J. Solid State Chem. 2000; 151:323-325.

Ramirez MA, Subramanian MA, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM. Solid State Commu. 2000;115:217-220.

Jani KK, Barad DV, Raval PY, Nehra M, Vasoya NH, Jakhar N, ModiSandeep Kumar KB, Lim DK, Singhal RK. Ceram. Int. 2021;47:5542-5548.

Baldev R, Rajendran V, Palanichamy P. Science and technology of ultrasonics, (Norosa Publishing House, New Deli). 2004;78-81.

Lakhani VK, Modi KB. Solid State Sci. 2010;12(12):2134-2143.

Sharma PU, Modi KB. Phys. Scr. 2010; 81:015601(9).

Solunke MB, Sharma PU, Pandya MP, Lakhani VK, Modi KB, Reddy PV, Shah SS. Pramana – J. Phys. 2005;65(3):481–490.

Solunke MB, Sharma PU, Lakhani VK, Pandya MP, Modi KB, Reddy PV, Shah SS. Ceram. Int. 2007;33(1):21-26.

Buch JJU, Lalitha G, Pathak TK, Vasoya NH, Lakhani VK, Reddy PV. Ravi Kumar, Modi KB. J. Phys. D׃ Appl. Phys. 2008;41: 025406(10).

Ramirez MA, Parra R, Reboredo MM, Varela JA, Castro MS, Ramajo L. Mater. Lett. 2010; 64:1226-1228.

Rajmi R, Yahya AK, Yusof MIM. Aust. J. Basic Appl. Sci. 2011;5(8):405-416.

Malaeb W, Basma H, Me M, Barakat, Awad R. Supercond J. Nov. Magn. 2017;30:3595–3602.

Modi KB, Shah SJ, Pujara NB, Pathak TK, Vasoya NH, Jhala IG. J. Mol. Struc. 2013; 1049:250–262.

Modi KB, Raval PY, Shah SJ, Kathad CR, Dulera SV, Popat MV, et al. Chem. 2015; 54(4):1543 -1555.

Tariq S, Ahmed A, Saad S, Tariq S. AIP Adv. 2015;5:077111-1-9.

Birch F. Geo Phys. J. Int. 1961;4(Supp.-1):295–31.

Pathak TK, Buch JJU, Trivedi UN, Joshi HH, Modi KB. J. Nanosci. Nanotech. 2008; 8(8):4181-4187.

Ismayil A, Nakamura T, Kamiya R, Nakamura M, Nakanishi Y, Naito T, Fujishiro H, Watanabe T, et al. J. Phys. Soc. Jpn. 2011; 80:SA113 - 1-3.

Raval PY, Makadiya AR, Pansara PR, Sharma PU, Vasoya NH, JBhalodia A, et al, Mater. Chem. Phys. 2018;212:343-350.

Raval PY, Pansara PR, Makadiya AR, Vasoya NH, Dolia SN, Modi KB. Ceram. Int. 2018;44(15):17667-17674.

Meshiya UM, Jani KK, Mange PL, Barad DV, Raval PY, Modi KB, Nambissan PMG. Spect. Lett. 2019;52 (10):633-641.

Meshiya UM, Raval PY, Joshi NP, Vasoya NH, Upadhyay D, Jha PK, Modi KB, Vib. Spec. 2020;112(103201):10.

Dong C. Powder X׃ Windows -95-based program for powder X-ray diffraction data processing, J. Appl. Cryst. 1999;32(4):838 -838.

Smith J, Wijn HPJ. Ferrites, (John Wiley and Sons, NY). 1959;5-21.

Huang Y, Shi D, Li Y, Li G, Wang Q, Liu L, Fang L. J. Mater. Sci. Mater. Electron. 2013;24(6):1994-1999.

Kumar R, Zulfequar M, Sharma L, Singh VN, Sanguttavan TD. Cryst. Growth Design. 2015;15(3):1374 -1379.

Yu H, Liu H, Luo D, Cao M. J. Mater. Process. Technol. 2008;208(1-3):145 -148.

Hutagalung SD, Ikhwan M, Ibrahim M, Ahmad ZA. Ceram. Int. 2008;34(4):939 -942.

Kudriavtsev BB,.Soviet. Phys. Acoust. 1956;2:172 -177.

Kapustinskii AF. Quart. Rev. Chem. Soc. 1956; 10:283-294.

Glasser L, Jenkins HDB. J. Am. Chem. Soc. 2000;122(4):632–638.

Shannon RD, Rossman GR. Am. Min. 1992; 77(1-2):94-100.

Mu L, Feng C, He H. MATCH Commun. Math. Comput. Chem. 2006;56:97-111.

Modi KB. J. Supercond. Nov. Mag. 2016; 29(9):2287- 2297.

Callister WD. Materials Science and Engineering: An Introduction, (John Wiley and Sons, NY); 2000.

Lila DL, Modi SK, Joshi NP, Raval PY, Vasoya NH, Modi KB, Joshi HH. Study on elastic, thermodynamic, and optical properties of Y2Ti2O7 pyrochlore determined by a semi-empirical method at 300 K. Asian Journal of Advances in Research. 2021 Dec 6;219-30.