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ABSTRACT 
 
In recent years, the mortality rate remains unacceptably high despite many advancements made in the field of 
lung-related diseases. This can be attributed to the lack of current preclinical models and the inability to 
translate fundamental epithelial studies into clinical therapy. Three-dimensional cultures have properties present 
in stem cells, such as the ability to self-organize in matrices and able to generate structures that can be 
reprogrammed to represent an organ or a pathology.  By adding source tissue ranging from cells to tissue 
fragments to a support matrix and specialized media, the generation of 3D organoid cultures are achieved 
resembling the physiological environment of the tissue’s origin. Depending on the source tissue, growth factors, 
and inhibitors provided, organoids can be programmed to recapitulate the biology of a system and the 
progression of a pathology. In this review, the main objective is to discuss recent technical advances that 
efficiently use organoids as a tool for disease modeling, regenerative medicine, toxicology studies, therapeutics 
and various techniques used for large scale organoid generation. Using animal models for drug screening and 
toxicology studies has certain drawbacks, but organoids can help to overcome these obstacles. The advantages 
of stem cell-derived organoid models in comparison to current culture systems are highlighted, recent 
developments in tissue-based organoids are becoming specialized models for studies related to human 
translation medicine. 
 
Keywords:  Lung progenitor cells; magnetic-activated cell sorting (MACS); fluorescence-activated cell sorting 

(FACS); regenerative medicine; Induced Pluripotent stem cells (iPSC) and % Colony Forming 
Efficiency (%CFE). 
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1. INTRODUCTION 
 
The  American Lung Association reports lung cancer 
as one of the leading causes of cancer-related deaths 
in the United States [1]. At some point in their lives, 
about 541,000 Americans living today will sometimes 
be diagnosed with lung cancer [2]. Large-scale 
genomic studies indicate that patients have 
intertumoral and intratumoral heterogeneity that 
demonstrate both genomic and phenotypic diversity 
[3]. Although patient-derived tumor xenografts 
(PDXs) have emerged as a useful model for 
translational research, limitations such as tumor 
heterogeneity in the PDX model and stromal                   
cells that were initially present in the dissected         
tumor will be gradually replaced by host stromal           
cells have an impact on the study of human tumor-
stromal interactions. This can be resolved through 
three-dimensional organoids, which closely 
recapitulate the morphological and genetic/epigenetic 
characteristics of the original tumor [4]. When 
cultured in two-dimension, cancer cell lines do not 
preserve the initial variability and complexity. 
However, three-dimensional organ structures                      
are able to mimic the lung cancer more realistically. 
Due to their more authentic nature, epithelial 
organoids have been used for many applications,  
such as studying fundamental cell biology,                     
drug screening across a range of lung                     
diseases, toxicology tests on cells, and regenerative 
medicine.  
 
Recent studies have identified biological processes 
specific to the human body and cannot be modelled in 
other animals such as immunodeficient mice, as their 
models do not properly reflect human physiology. 
These include brain development, metabolism, and 
the testing of drug efficacy. The emergence of human 
in-vitro 3D cell culture approaches using stem cells 
from different organs has gained widespread 
attention, as they have the potential to overcome these 
limitations. Human organoids can be seen as a novel 
experimental model that proves more reliable than the 
animal models being currently used [5-8]. 
Understanding the growth needs of the various stem 
cell populations, which can be accomplished by 
studying cell-cell interactions in organoids, can help 
to address the failure to meet the requirement of lung 
transplantation. There are many distinct cell types in 
the lung , which makes it a complex organ. A key 
research question is how these cells interact with 
development, homeostasis, and disease, and organoids 
provide a platform to investigate certain cell-cell 
interactions [9]. Therefore, the production of human 
in-vitro 3D cell cultures using stem cells from various 
organs is widely regarded as capable of overcoming 
these constraints.  

2. ORGANOIDS AND CULTURING 
METHODS 

 

Organoids are three-dimensional structures grown in 
cell culture that resemble the organ from which it 
originated. In-vivo, epithelial cells live in a complex 
organ microenvironment, supported by stromal cells 
and the adjacent extracellular matrix. Epithelial cells 
cultivated in a typical two-dimensional manner have 
only some physical and molecular similarities to the 
organ from which it developed. It also lacks the 
cellular heterogeneity found in the tissue of its origin. 
Organoid cultures typically rely on cell-cell 
interactions, between a stem cell and a putative stem 
cell niche, for their growth and differentiation. 
Epithelial progenitor cells isolated from the human 
lung and cultured in trans well cell culture inserts  
with stromal support, recapitulate in-vivo 
cellular interactions and represent the architecture of 
the tissue of its origin [10,11]. The earliest mention of 
a three-dimensional epithelial organoid model was 
described by Dr. J D Hackney in an Aspen 
Emphysema conference more than 40 years ago, but 
their utility in translational medicine remained limited 
until recently. The early days of organoid model 
usage required large amounts of starting materials and 
limited in-vitro viability were the regulating factors 
for high-throughput  screening [12,13]. But due to the 
improvements made throughout the years, organoids 
from various endoderm-derived organs from humans, 
including colon [5], prostate [14], intestines [15], have 
been successfully cultured and used in various 
screening studies. 
 

2.1 Culturing Organoids from Lung Tissue 
 

Described the methods for isolating the distal and 
proximal lung epithelial stem cells and culturing 
organoids in a recent published article from our lab 
[16]. In the current study, we used the Magnetic-
Activated Cell Sorting (MACS) method for depleting 
the blood cells(CD235a), immune cells (CD45), and 
endothelial cells (CD31), as well as, used the  
Fluorescent Activated Cell Sorting (FACS) for 
isolating epithelial cells, in particular HT II 280+ cells 
as distal lung stem cells and NGFR+ cells as proximal 
lung stem cells. Distal lung cells express HT II 280 
and SPC surface markers and Proximal lung cells 
express K5 and Sox2 surface Markers (Fig. 1). We 
described the methods of culturing alveolar and 
airway organoids using the isolated distal and 
proximal lung stem cells, respectively. Organoids 
derived from lung progenitor cells are considered to 
be clonally derived structures. In our previously 
published study, we showed this using genetic lineage 
tracing approaches, in which GFP negative, GFP low 
and GFP high lung epithelial progenitor cells self-
renew to form clonally distinct organoids [17,18].  



 
Epithelial-mesenchymal interaction is critical for the 
successful formation and differentiation of organoids
from human lung progenitor cells. The MRC5 cell 
line is convenient to use, capable of 42
doublings before the onset of senescence and grows 
cells rapidly enough for the generation of high
organoid cultures. Co-cultured epithelial cel
primary fibroblasts isolated from adult lung tissue, as 
well as embryonic lung tissue in the lab. Observed 
that the results are consistent with the use of MRC5. It 
is possible to use another normal lung fibroblast cell 
line, such as CCD-34-Lu. However, further testing 
must be done to determine their efficiency regarding 
organoid growth.  
 
In our experience, the seeding density is critical for 
the formation of quality organoids with higher colony 
forming efficiency % (CFE%), as well as for the 
organoid size (100-500 μm). Seeding higher numbers 
of cells limits the space available for the organoids to 
expand, and the cells form small clusters, fail to 
polarize, form a lumen, and differentiate into 
specialized cell types that can secrete surfactant
mucus into the lumen. 
 
Repeated the experiment multiple times with different 
biological samples. Started organoid culture with 
1000 cells/well, 2000 cells/well, and 5000 cells/well. 
The colony forming efficiency, shown in Fig. 2, is 

Konda and Depuru; UPJOZ, 

 
76 

 

mesenchymal interaction is critical for the 
successful formation and differentiation of organoids 
from human lung progenitor cells. The MRC5 cell 
line is convenient to use, capable of 42-45 population 
doublings before the onset of senescence and grows 
cells rapidly enough for the generation of high-quality 

cultured epithelial cells with 
primary fibroblasts isolated from adult lung tissue, as 
well as embryonic lung tissue in the lab. Observed 
that the results are consistent with the use of MRC5. It 
is possible to use another normal lung fibroblast cell 

ver, further testing 
must be done to determine their efficiency regarding 

In our experience, the seeding density is critical for 
the formation of quality organoids with higher colony 
forming efficiency % (CFE%), as well as for the 

. Seeding higher numbers 
of cells limits the space available for the organoids to 
expand, and the cells form small clusters, fail to 
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specialized cell types that can secrete surfactant or 

Repeated the experiment multiple times with different 
biological samples. Started organoid culture with 
1000 cells/well, 2000 cells/well, and 5000 cells/well. 
The colony forming efficiency, shown in Fig. 2, is 

from two different biological samples with three 
technical replicates (5000 cells/ well). The variability 
in Percentage of Colony Forming Efficiency (%CFE) 
can be up to 2-5% and is dependent on parameters, 
such as donor age and donor health. %CFE can also 
be affected by the amount of time required to procure 
the tissue. Cells from fresher tissue samples exhibit 
higher %CFEs. Organoids were cultured in different 
media, such as Pneumacult ALI (Air- 
medium and Small airway epithelial cell growth 
medium (SAECGM) from Promo cells. Both medias 
have resulted in a similar %CFE (4
differences in the size of the organoids. Organoids 
cultured in ALI medium are larger in size and have 
greater lumen, they are around 500µ, whereas 
SAECGM is around 100 µ.  
 
To further enhance the colony forming efficiency, we 
tried to culture organoids by adding either 
individually or in combination of 10 μM Rho kinase 
inhibitor (ROCK) and 10 μM TGFβ inhibitor 
(Immunosuppressive cytokine). Based on our results, 
%CFE is higher when organoids were cultured             
with 10 μM Rho kinase inhibitor for the first                        
24 hours after seeding and with 10 μM TGFβ  
inhibitor from day 2 to day 15 (Fig. 3). Organoids 
were passage between day 25 to day 30. The %CFE 
almost doubled in Passage 1 (P1) compared to 
Passage 0 (P0). 
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2.2 Generating Organoids from Expanding 
Lung Epithelial Tips In-vitro 

 
In order to isolate the organoids, placed the tip of the 
distal epithelium in Matrigel with culture conditions 
similar to embryonic mouse lung. In the Matrigel, 
immune cells and red blood cells are inhibited, 
allowing the enhancement of selective population, 
such as progenitor cells. Human and mouse lung tips 
are analogous [19]. Resected, healthy or tumor 
material or biopsies can be used to generate 
organoids. Patient-derived organoids generated from 
biopsies provide a powerful resource for a variety of 
medical and translational approaches. In order to 
realize the potential of personalized medicine, it is 
useful for the study of drug toxicity and effectiveness 
[20].  
 

2.3 Culturing Organoids from iPSC 
 
The organoid culture, derived from human induced 
pluripotential stem cells (hiPSC), was stemmed from 
the manipulation of various multilineage 
differentiation and morphogenesis. Organoids derived 
from hiPSC are superior to 2D cultures in 
architecture, functionality, and has similar features of 
tissues as in vivo (microenvironment). We are 
showing the applications of these hiPSC derived 3D 
organoids in modeling cancer, hereditary diseases, 
host-microbe interaction. Organoids also help in 
discovering diagnostic markers for early disease 
detection through screening. 
 
The availability of cadaveric tissue, a small source of 
donor tissue, is highly ineffective and logistically 
difficult for both transplantation and disease 
modeling; this often contributes to the low efficiency 
of the available cells/tissues. The main focus is on the 
pluripotency in human Embryonic Stem Cells (hESC) 
in the presence of specific culture conditions, as 
significant amounts of somatic transplantable cell 
types in vitro need to be obtained. Since hESC is self-
renewable and proliferative, it can be manipulated to 
model human diseases. These cells can be used for 
transplantation as well [21]. 
 

Rossant and colleagues published an initial summary 
of lung organoid generation from iPS cells (Induced 
pluripotent stem cells) and included an air-liquid 
interphase in the final stage. In the processes of 
developing foregut endoderm, two populations of 
NKx2-1+ progenitors play an important role in 
developing the postnatal lung. TGFß and BMP 
inhibitors, combined with the stimulation of BMP 
(Bone morphogenetic protein)and the signaling of 
FGF (Fibroblast growth factor), helps generate the 
endodermal progenitor cells that are used for culturing 

organoids [22]. The Wnt signaling pathway plays an 
important role in regulating the Proximodistal 
epithelial patterning. Wnt activation withdrawal 
results in the promotion of proximal epithelial cells 
from primordial NKx2-1+ progenitors, as opposed to 
distal epithelial cells. Inversely, in the presence of 
Wnt activation, distal epithelial cells are enhanced 
[23]. Alyssa J. Miller and eta., addressed the  
schematics of the protocol and it’s timeline for 
generating organoids from iPSC; their applications 
and limitations were discussed as well [24]. The 
organoids derived from very well-established 
differentiation protocols have the capacity to culture 
in-vitro, recapitulate developmental programs, form 
sophisticated 3D structures, and self-organize [25-27].  
 

3. CLINICAL APPLICATIONS OF 
ORGANOIDS 

 
3.1 Organoids as a Tool for Studying 

Fundamental Cell Biology 
 
3D organoids help in research accurately a variety of 
in vivo biological processes such as tissue renewal, 
the function of stem cell or niche, the tissue response 
to drugs and mutations [28]. Attempts were made to 
model human organs biology – in 2D from human 
stem cells, either with or without a 3D matrix, human 
cell bio-printing and cell culture in microfluidic 
device(“organ-on-a-chip”) [29] before the advent of 
organoids and showed a potential for drug screening 
or research in human diseases [30]. 3D culture 
structures which are very similar to real human organs 
from which its originated and in some cases 
histologically undifferentiable from them. The 
common feature of any organoids, which is that it is 
produced through the in vitro imitation of human 
development or organ regeneration from pluripotent 
stem cells (PSCs) or adult stem cells (ADSCS) 
[5,6,31-35]. 
 

The study of organ formation can thus provide useful 
insight into processes underlying human development 
and regeneration of organs which focus on their 
importance as well as their possible use for 
fundamental biological research in the medicinal and 
molecular testing of drugs. This information might 
lead basic biologists to explore the use of this new 
platform to study human pathophysiology. Organoids 
has advantages in studying fundamental biology such 
as recapitulation of developmental biology, genetic 
manipulation, genome-wide screening. Human lung 
organoids are ideal for studying  mesenchymal and 
epithelial interactions due to the presence of 
mesenchyme , epithelial cells and airway structures 
which helps in understanding human lung 
development, developing models for malformations in 
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human fetal lungs using patient-specific cell lines(24). 
Clonal organoids retaining airways and/or alveolar 
lineaging cells are generated from uninjured club cells 
in 3D-ALI organoid culture of club cells or club cell 
subsets, including BASCs (Bronchioalveolar stem 
cells). In vitro organoid culture conditions therefore 
promote the activation of the program of stem or 
progenitor cells, providing a strong model for 
investigating the initial reprogramming phases of 
differentiated mature cells into an undifferentiated 
condition [18,20,36]. 
 

3.2 Organoids in Regenerative Medicine  
 
Crosstalk between endothelial cells and epithelial or 
stromal cells during development leads to a fully 
patterned organs such as lungs, kidneys etc. 
understanding cell-cell crosstalk during development 
can be applied therapeutically through the generation 
of transplantable miniature organ-like tissue called 
“organoids” [37]. The same objective is explored by 
regenerative medicine and organ transplantation to 
substitute diseased organs with new ones. While 
significant progress in regenerative medicine has been 
made so far, there is still insufficient current 
knowledge and organ engineering in its 
implementation, and organ regeneration remain 
inaccessible objectives [38-40]. 
 
Organoids offer an alternative to the supply of 
autologous tissue for whole organ and cell 
transplantation. Organ transplanting procedures such 
as renal transplant, lung transplant, and liver 
transplant, with high demands and poor success 
levels, may be improved by using organoids from that 
corresponding healthy organ from the same patient. 
Kidney organoids were successfully transplanted to 
adult mice by Taguchi et al., paving the successful 
way for the potential for organ transplants [41,42]. 
Transplanted cells benefit the patients with two 
distinct ways such as cell-engraftment and bystander 
effect. The first one involves, incorporation of cells in 
the damaged tissue epithelium of cells, such as stem 
cells/ progenitor, where expansion and differentiation 
will substitute for damaged epithelium. Transplanted 
cells help in tissue integrity improvement and disease 
outcome.  In comparison, the second one involves in 
modulation of the host tissue through cues such as 
paracrine signaling helps in the promotion of 
endothelial and epithelial repairs [43]. The transplant 
of mesenchymal stromal cells (MSCs) has been 
investigated to assist repair of pulmonary diseases, 
including ARDS (Adult respiratory distress 
syndrome), COPD (Chronic obstructive pulmonary 
disease) and BPD (Bronchopulmonary dysplasia) [44-
46]. Disease modeling for degeneration and 
developmental disorder can be achieved using 

organoids by introducing patient mutations in 
pluripotent stem cells using genome-editing 
techniques [47,48]. 
 

3.3 Lung Cancer Organoids Derived from 
Patient Use as an In vitro Cancer Model 
for Drug Screening  

 
Lung cancer is histologically diverse and comprises 
three major types (Adenocarcinoma, squamous cell 
carcinoma, and small cell carcinoma) and several 
fewer common types (including adenosquamous 
carcinoma and large cell neuroendocrine carcinoma). 
The investigation of molecular specific treatment 
based on genetic changes was essential for classic in-
vitro cancer cell line models because they offer 
significant manipulation advantages, time, and 
performance [47].  
 
In general, cancer cell lines usually don’t retain 
original heterogeneity and 3D structure; hence the 
nature of the lung cancer is fundamentally limited. 
PDXs recapitulate the tissue structure of the original 
cancer and preserve the original cancer genetic and 
histological features and has its limitations such as 
poor success rate, cost incur in producing and most 
importantly its resource-intensive and requires long 
term [3,49,50]. 
 
The creation of personalized lung cancer medicine 
will help in vitro lung cancer models representing 
individual patients. Effective lung cancer organoid 
generation that typically recapitulates the original 
patient tumor properties and preserves the histological 
characteristics of the original cancer tissue.  New 
findings indicate, the lung cancer organoids are 
beneficial tool for drug discovery and new clinical 
trials and also used for drug toxicity predictions in 
non-cancer cells. Considering the short length of time 
to establish organoid cultures and screening, this 
model is used wider for preclinical studies in 
predicting drug responses in patients [51]. 
 

3.4 Usage of Organoids in Translational 
Applications and Personalized Treatment 

 
Use of organoids models to a deeper understanding of 
cell activity during regeneration and disease is 
intended to increase the knowledge to the 
development of improved translational therapy [52]. 
In human lung organoids, CRISPR/Cas9 technology 
has been used to model and correct many lung 
diseases successfully [53-55]. Successful studies 
achieved by gene correction of SFTPB gene 
(Surfactant protein gene), HPS2 gene mutation 
(Hermansky pudlak syndrome type 2) using 
CRISPR/Cas9 in alveolar and human pluripotent stem 
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cell organoids [54,56]. Organoids will more precisely 
predict and act as a successful drug-screening tool 
including efficacy analyses, toxicity test, and 
pharmacokinetics analysis. Moreover, the potential 
tailored care methods for each individual patient can 
be archived by studying organoids [57]. Recent 
studies have shown that tissue restoration conditions 
can develop epithelial organoids directly from healthy 
and diseased bodies such as the lung, which carry the 
generic LGR5+ markers (Leucine-rich repeat-
containing G-protein coupled receptor 5). Organoid 
technology opens up a range of methods for studying 
growth, physiology and disease, drug discovery, and 
personalized medicine. In the long run, cultured 
organoids will replace donor transplants and delivers 
gene therapy promises. 
 
Organoids can also be isolated by using minimally 
invasive techniques such as fine-needle aspiration 
(FNA) from patients with very minimal processing 
without damaging the histologic growth patterns and 
infiltrating immune cells [58]. 
 
These Organoids are used as powerful tool for 
studying drug response studies. Multiplying the 
organoids by passaging them repeatedly up to 4-6 
times and study the lung biology by performing 10x 
Single cell RNA-seq experiments which helps in 
developing new drugs for disorders such as Cystic 
fibrosis, Idiopathic pulmonary fibrosis etc.  
 

4. CONCLUSION 
 
In these studies, we analyzed several approaches 
using 3D organoids cultured from lung epithelial 
progenitor cells. For both basic and translational 
research, including human disease models and drug 
screening, we also outlined some of the potential uses 
of organoids in the fields of regenerative medicine 
and to study fundamental biology, such as tissue 
renewal, genetic manipulations and resolve 
unanswered issues in the biology of the lungs. 
Organoids have great potential for translational 
research, including personalized treatments, 
toxicology studies, and drug screenings. Organoids 
can be used to study developmental disorders and 
degenerative diseases such as cystic fibrosis, 
hypertrophic emphysema, which can also lead to 
potential reductions in usage of animals in research. 
Individuals will hopefully have opportunities for 
personalized treatment regimens by using patient-
derived organoids derived from biopsies that can 
provide an exceptional source of tissue at both the site 
of disease and normal adjacent tissue. Phenotypic 
profiling and genetic alterations can be revealed, 
which in turn help in generating personalized 
therapeutic approached. Organoids generated from 

normal tissue adjacent to the site of disease can be 
used to reduce toxicity and side effects of a proposed 
therapy.  
 
Despite the demonstrated benefit of organoid usage in 
the recapitulation of cellular heterogeneity and 
complexity, the usefulness of organoids in in-vivo 
research on dynamic interactions is still unknown. 
They lack surrounding stromal cells in the culture, 
failing to recreate the tumor microenvironment, which 
comprises fibroblasts, endothelial cells, immune cells, 
and extracellular matrix. In this case, the field will 
most likely overcome this limitation by synergistic 
engineering of organoid and lung-on-a-chip 
approaches, resulting in organoid-on-a-chip. One of 
the most difficult challenges is achieving complete 
organoid differentiation and culturing without 
Matrigel or growth factors. The presence of Matrigel 
can impact functional/biochemical assessments and in 
comparison, with 2D cell line culture, complicate cell 
harvesting and passing. In addition, enriched organoid 
growth factors can affect the natural tissue morphogen 
gradients, which can be rectified by trying culturing 
lung organoids in bioreactors without Matrigel. In 
order to successfully explore the potential of lung 
organoids in clinical medicine, much research needs 
to be done to overcome the above-mentioned hurdles. 
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