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ABSTRACT 

 
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the 

most important and destructive pests for date palms causing high economic losses. Several control methods have 

been applied to manage this pest. Intensive use of conventional insecticides to control RPW successfully 

minimized the weevil number, but they are still harmful for the environment as they cause pollution and damage 

other useful creatures. The present study aimed to find suitable, effective, and safe alternative control means. In 

addition, the impact of tested compounds on the enzymatic activity of the third instar larvae were assayed 

spectrophotometrically. Four commercial insecticides were applied against the 3rd instar larvae of RPW under 

laboratory conditions and the LC50 values were estimated. Larvae that survived treatment were collected 24h 

post treatment and were prepared for further enzymatic activities analysis. All experimentations were carried out 

at Wood and tree scavenger research department, Plant protection research institute, Agricultural research 

center. Results showed that Dr. Sure® was the most toxic compound according to low LC50 value obtained. In 

addition, results revealed that BIO-MAGIC® was the least toxic as the high LC50 value compared to the other 

compounds. In addition, results revealed significant impacts on the detoxifying enzymes in the 3rd instar larvae 

treated with LC50 of tested compounds as a defensive response against those compounds. These results reveal 

the suitability of the non-conventional insecticides to control the youngest larval instars effectively. 
 

Keywords: Red palm weevil; Rhynchophorus ferrugineus; detoxifying enzyme; esterases; acetyl 

cholinesterase; acid phosphatase; alkaline phosphatase; glutathione-s-transferase; cytochrome 

P450.

mailto:emanelrehewy726@gmail.com


 
 
 
 

Elrehewy and Barakat; UPJOZ, 42(21): 19-27, 2021 

 
 

 
20 

 

1. INTRODUCTION 
 

Date palms, Phoenix dactylifera, are one of the most 

economically important crops in the Middle East and 

Egypt and they are threatened strongly by the red 

palm weevil. The red palm weevil (RPW), 

Rhynchophorus ferrugineus (Olivier) (Coleoptera: 

Curculionidae), is one of the most important and 

destructive pests for date palms causing high 

economic losses [1,2]. It develops within the stipe of 

the date palm and subsequently destroys the vascular 

system causing collapse tree death of the plant. R. 

ferrugineus spreads in Europe Oceania, Africa, and 

Asia [3]. The first record of this pest in the middle 

east was in the 1980s and has heavily damaged date 

production by destroying many thousands of date 

palms [4,3]. It was first recorded in Egypt in 1992 in 

date palm farm in Sharkia and Ismailia Governorates 

[5]. Several control methods have been applied to 

manage this pest, including plant quarantine 

treatments, improved farming practices, insecticides, 

and pheromone traps [6]. Although the application of 

insecticides are the most effective means for 

minimizing the weevil numbers, they still harmful for 

the environment as they cause pollution and damage 

other useful creatures [6,7]. Consequently, it is vitally 

important to find safe alternative control means with 

new and unique mode of action. Of these alternatives, 

the entomopathogenic fungi [8, 9,10], nematodes [8], 

bacteria 11,12], and plant-based products [13, 14, 15, 

16]. Implementation of entomopathogenic fungi in 

pest management program of RPW proved their 

efficiency and compatibility with other control means 

[17, 18, 19, 20, 21]. On the other hand, using plant-

based insecticides showed some progress in 

controlling the RPW infestation [13,22,23]. The 

extracted products of the neem tree, Azadirachta 

indica A. Juss (Sapindales: Meliaceae) are promising 

compounds that proved their potential and 

environmentally safe to vertebrates, plant species and 

useful invertebrates in addition to their wide use in 

control many insect pests including wood borers as 

promising agents [24,25,26, 27]. In this context, the 

present study was carried out in order to evaluate the 

efficiency of different groups of eco-friendly 

insecticides compared to conventional means 

considering the management of the red palm weevil 

larvae. In addition, the impact of tested compounds on 

the enzymatic activity of the fifth instar larvae. 

 

2. MATERIALS AND METHODS 
 

2.1 Insect Rearing 

 

Larval stage of RPW was collected from heavily 

infested and untreated date palm trees in Sharkia 

governorate, Egypt. Collected larvae were reared on 

clean sugar cane’s cuts under laboratory conditions of 

25±2ºC and R.H. of 65±5% [28] in Wood and tree 

scavenger research department, Plant protection 

research institute, Agricultural research center, Dokki, 

Giza, Egypt. 

 

2.2 Tested Compounds 

 

Four commercial insecticides were applied against the 

3rd instar larvae of RPW. These compounds were as 

follow; Pyrifos® 480 g/L EC (Chloropyrifos 48%) 

was obtained from El-Nasr Co. for intermediate 

chemicals, Egypt, a bioinsecticides BIO-MAGIC® 

(Metarhizium anisopliae (Metchnikoff) Sorokin) as 

1.75% WP and was provided from Gaara 

Establishment (Import and Export), two botanical-

based insecticides; Dr. Sure® 2ml/L and was supplied 

from Krishna Valley Agrotech LLP, India, and 

Achook® 0.15% EC (azadirachtin) and it was supplied 

from Godrej Agrovet Ltd., India. 

 

2.3 Toxicity Assays 
 

Five concentrations of each tested compounds were 

tested against the 3rd instar larvae of RPW. Four 

replicates each containing ten larvae were treated by 

offering treated sugar cane cuts to them. Fresh clean 

cuts of sugar cane were dipped in prepared suspension 

for 10s and then were left to dry at room temperature 

to be offered later to RPW larvae. For the control 

experiment, the same numbers of larvae were offered 

fresh clean sugar cane cuts dipped in distilled water. 

Larval mortality was recorded daily and the mortality 

percentage was corrected according to Abbott’s 

formula [29]. The LC50 values of tested compounds 

were estimated according to Finney [30] using 

"LdPLine®" software. 

 

2.4 Biochemical Assays 
 

2.4.1 Sample preparation 

 

The 3rd instar larvae were treated with the determined 

LC50 of tested compounds. Larvae that were survived 

treatment of tested compounds after 24h. were 

collected for further biochemical analysis. One gram 

of treated and untreated larvae was weighed. Larvae 

were then homogenized with 1.5-4.5 ml of 0.01MTris 

buffer (pH 7.8) and physiological saline solution 

(NaCl 8.8 gm, KCl 0.2 gm, and CaCl2 0.3 gm/Liter, 

pH 6.7-6.8) with traces of phenylthiourea crystals in 

an ice bath for three minutes. The homogenate was 

centrifuged for 20 minutes at 4°C at 10,000 g and the 

supernatant was filtered through an l-μm glass wool 

membrane syringe pre-filter and was used as the 

enzyme source for further enzyme activity                   

assays. Control specimens were obtained by 
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homogenizing healthy larvae through the same 

technique. 

 

2.4.2 Determination of α- and β- esterases activities 

 

α- and β- esterases activities were detected by 

Gomori’s colorimetric method (van Asperen, 1962) 

using α- and β-naphthyl acetate as substrates. 

Absorbance was read 15 min later at 600 and 555 nm 

for the produced α-and β-naphthol, respectively, 

against blank that lacked enzyme. 

 

2.4.3 Determination of acid and alkaline 

phosphatase activities 

 

The activity of acid phosphatase was determined 

according to Tietz’s procedure (Rifai et al., 2018). 

The enzyme activity was measured calorimetrically at 

405 nm using spectrophotometer. On the other hand, 

the activity of alkaline phosphatase was assayed 

according to Klein et al. [31] using sodium 

phenolphthalein phosphate as substrate. The enzyme 

activity was measured calorimetrically at 550 nm 

using spectrophotometer. 

 

2.4.4 Determination of acetyl cholinesterase 

activity 

 

The activity of acetyl cholinesterase was estimated 

using acetylcholine I (AcSChI) as substrate          

according to Ellman et al. [32] and the activity were 

estimated at 412 nm calorimetrically using 

spectrophotometer. 

 

2.4.5 Determination of glutathione-s-transferase 

(GST) activity 

 

The activity of GST was estimated using 1-chloro-

2,4-dinitrobenzene (CDNB) as substrate [33]. The 

enzyme activity was assessed calorimetrically using 

spectrophotometer at 340 nm. 

 

2.4.6 Determination of cytochrome P450 activity 

 

The activity of cytochrome p450 was determined 

using means of the difference spectrum of dithionite-

reduced carbon monoxide (CO) [34,35]. The activity 

was estimated calorimetrically using 

spectrophotometer at 400-500 nm. 

 

2.5 Statistical Analysis 
 

Obtained results were presented as mean ± S.D. and 

the data were statistically analyzed using one-way 

analysis (ANOVA) followed by Duncan’s New 

Multiple Test where appropriate [36] at P<0.05 using 

SPSS statistics 17.0 release 17.0.0 software. 

3. RESULTS AND DISCUSSION 

 

3.1 Toxicity Assay 
 

Results presented in Table 1 showed the LC50 of 

tested compounds against the 3rd instar larvae of red 

palm weevil, R. ferrugineus. Results showed that Dr. 

Sure® was the most toxic compound according to low 

LC50 value obtained. In addition, results revealed that 

BIO-MAGIC® was the least toxic as the high LC50 

value compared to the other compounds. These results 

reveal the suitability of the non-conventional 

insecticides to control the youngest larval instars 

effectively. This agreed to Hussain et al. 

[10,37,20,38,39]. 

 

3.2 Biochemical Assay 

 

Data presented in Table 2 showed the effect of tested 

compounds on α- and β- esterases activities in the 

RPW 3rd instar larvae. Results revealed that the 

activity of the enzymes increased significantly 

compared to control. This demonstrate that 

nevertheless the tested compound α-esterase activity 

exhibited higher activity for detoxification than β-

esterase. The same results were obtained by Ragheb et 

al. [40,41,42,43]. The esterase enzymes belong to the 

detoxifying enzymes which are responsible for the 

detoxification of any foreign substance in insect’s 

body. Moreover, esterase is an important detoxifying 

enzyme which hydrolyzes the esteric bond in any 

toxicant. Also, esterase is one of the enzymes showing 

the strongest reaction to environmental stimulation 

[44]. Their high activity may be an indication of the 

insect’s response to body intoxication and may be 

consider as a remark of resistance development [45, 

46, and 21]. Furthermore, it is well known that any 

infectious disease for insect regardless the infection-

causing factor leads to increased activity of 

detoxifying enzymes in general, and the esterases in 

particular [47,48]. Our results were in accordance 

with Dubovskiy et al. [49,50,51] who determined high 

esterase activity when treated different insects with 

entomopathogenic fungi. 
 

The effect of LC50 of Pyrifos®, Achook®, BIO-

MAGIC®, and Dr. Sure® on AChE, GST, and 

Cytochrome P450 activities. Treatment with tested 

compounds declined the activity of acetyl 

cholinesterase compared to control. Furthermore, 

treatment of the 3rd instar larvae with LC50 of tested 

compounds caused fluctuations in GST activity as no 

particular pattern was recognized. Moreover, results 

showed no significant difference in the cytochrome 

P450 activity compared to control. Insects use 

detoxification enzymes such as acetylcholinesterase, 

glutathione S-transferases and cytochrome P450 for 
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their defense against xenobiotics [47]. These enzymes 

degrade the toxic chemicals in insects before reaching 

the target sites [52]. Of the detoxifying enzymes, 

AChE that catalyzes the hydrolysis of acetylcholine, a 

neurotransmitter [53, 54]. The inhibition of AChE 

activity causes insect death [54]. Many studies were 

conducted to show the inhibitory activity of many 

plant-based products against many insects 

[55,56,57,54]. GST gain its importance from its role 

in the degradation of insecticides and toxic 

substances. Besides degradation of xenobiotics, GST 

takes part in metabolite removal and protection of 

tissues from damage by free radicals [58]. Moreover, 

GST may play a role in protecting insects from 

pathogen infection [59]. The suppression of GST 

activity in insect cause eventually death to insect [60, 

61].  

 

Table 1. Susceptibility of the red palm weevil, Rhynchophorus ferrugineus, to tested compounds 

 

Tested compounds LC50 

(g/L) 

Fiducial limits (95% C. I.) Slope 

Lower Upper 

Pyrifos® 2.14 1.40 2.81 3.16±0.27 

Achook® 3.87 2.99 5.12 2.30±0.21 

BIO-MAGIC® 4.48 3.99 5.02 2.70±0.31 

Dr. Sure® 0.89 0.52 1.69 2.13±0.23 

 

Table 2. α- and β- esterase activities in the 3rd instar larvae of Rh. ferrugineus after 48-h treatment with 

LC50 of the tested insecticidal compounds 

 

Tested 

Compounds 

α -esterase activity 

(μg α-naphthol /min/ gm. b.w.) 

(Mean ±S.D) 

β-esterase activity 

(μg β -naphthol /min/ gm. b.w.) 

(Mean ±S. D) 

Pyrifos® 466.5±2.5 b 290.3±3.3 b 

Achook® 482.6 ± 7.5 b 229.4 ± 4 b 

BIO-MAGIC® 479.33 ± 24.2 b 266.3 ± 6.02 c 

Dr. Sure® 536.6 ± 3.5 c 212.3 ± 2.5 b 

Control 195 ± 2.9 a 139.3 ± 6.02 a 
-Means of the same column followed by different letters are significantly different, P≤0.05, b.w. = body weight. 

 

Table 3. AChE, GST and P450 activity in fat body of the early 4th instar larvae of Rh. ferrugineus after 

48-h treatment with LC50 of the tested insecticidal compounds 

 

Tested compounds AChE activity (μg ACh Br/min/ml) 

(Mean ±SD) 

GST activity 

(µmole/min/ml) 

(Mean ±S. D) 

P450 activity 

(µ mole/min/ml) 

(Mean ±S. D) 

Pyrifos® 203.3 ± 3.6a 55.2 ± 2.8a 90.1 ± 3.87a 

Achook® 224.7 ± 7.2b 25.2 ± 1.6c 85.9 ± 3.19a 

BIO-MAGIC® 312.6 ± 13.79c 47.2 ± 2.9b 89.1 ± 3.87a 

Dr. Sure® 196.4 ± 6.33a 42.1 ± 1.9b 92.7 ± 3.03a 

Control 333.1 ± 8.5c 46.5 ± 2.87b 91.2 ± 5.05a 
-Means of the same column followed by different letters are significantly different, P≤0.05. 

 

Table 4. ALP and ACP activity in fat body of the early 4th instar larvae of Rh. ferrugineus after 48-h 

treatment with LC50 of the tested insecticidal compounds 
 

Tested 

Compounds 

Alkaline phosphatase activity 

 (U x103 / gm. b.w.) 

(Mean ± S.D.) 

Acid phosphatase activity 

 (U x103 / gm. b.w.) 

(Mean ± S.D.) 

Pyrifos® 186.66 ± 4.50 b 128.0 ± 6.08 a 

Achook® 190.33 ± 14.57 a 130.6 ±7.09 a 

BIO-MAGIC® 177.3 ± 14.57 c 122.9 ± 6.03 b 

Dr. Sure® 169.9 ± 6.32 a 119.9 ± 11.3 a 

Control 197.66 ± 12.34 a 130.3 ± 6.42 a 
-Means of the same column followed by different letters are significantly different,P≤0.05, b.w. = body weight. 
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The effect of LC50 of Pyrifos®, Achook®, BIO-

MAGIC®, and Dr. Sure® on acid and alkaline 

phosphatase activities were shown in Table 4. Results 

showed insignificant decrease in both ACP and ALP 

compared to control. Results also showed that Bio-

Magic and Dr.Sure were the most effective 

compounds compared to the rest compounds. Acid 

and Alkaline phosphatases are hydrolytic enzymes 

that are responsible for hydrolyzing the 

phosphomonoesters under acid or alkaline conditions, 

respectively [62]. Acid and Alkaline phosphatase are 

involved in insect development, nutrition and egg 

maturation [63]. Acid phosphatase is extensively 

studied due to its association with histolysis. ACP 

hydrolyzes a variety of orthophosphorylation 

reactions [64]. This could be due to decreasing the in 

acid-soluble phosphorus content [65]. These results 

agreed with El-Banna & Abd El-Kareem, [66,67,68] 

when different insects were treated with conventional 

and non-conventional insecticides. 

 

4. CONCLUSION 
 

Finally, we can conclude that using biological based 

insecticides against the red palm weevil can provide 

valuable substitutes for conventional chemical 

insecticides. In addition, the application of plant 

extracted product demonstrate the efficacy of this 

group of pesticides against the red palm weevil larvae 

not only as killing effect but also as latent effect of 

these compounds.    
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