UTTAR PRADESH JOURNAL OF ZOOLOGY

42(22): 57-67, 2021 ISSN: 0256-971X (P)

A REVIEW ON ANTICANCER SOURCES FROM AQUATIC ORGANISMS

J. APARNA^{1*} AND M. AMPILI¹

¹Post Graduate and Research Department of Zoology, N.S.S. Hindu College, Changanacherry, Kottayam, Kerala, India.

AUTHORS' CONTRIBUTIONS

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

<u>Editor(s):</u>
(1) Rakpong Petkam, Khon Kaen University, Thailand.
<u>Reviewers:</u>
(1) Dalia Ashraf Abdel-Moneam ahmed, Cairo University, Egypt.
(2) Rusănescu Carmen Otilia, Polytechnic University of Bucharest, Romania.

Received: 13 August 2021 Accepted: 27 October 2021 Published: 02 November 2021

Review Article

ABSTRACT

Now a days the prevalence of cancer is increasing in an alarming way. There are several treatment methods for the control of cancer cells including chemotherapy, radiation, and surgery. Chemotherapy, that uses chemicals for the inhibition of cancer growth and out-turn leads to several side effects to the normal cells. Naturally derived substances are getting more attention in cancer studies as a replacement of the chemicals or enhancers of chemicals used in chemotherapy. This review intends to gives a brief account on the recently found anticancer activity of aquatic organisms or compounds.

Keywords: Cancer; cytotoxicity; aquatic microorganisms; aquatic plants; aquatic algae; fish.

1. INTRODUCTION

Cancer is a broad word that encompasses a wide range of illnesses that can affect any area of the body. One of the hallmarks of cancer is the fast emergence of aberrant cells that expand beyond their normal borders, allowing them to infiltrate neighbouring parts of the body and migrate to other organs; metastasis. Cancer metastases are the leading cause of mortality [1]. In today's world cancer is becoming a major cause of death. The cancer control using synthetic or naturally occurring agent is becoming popular now a days, but the cost and side effects of chemicals gives more attention to natural compounds in the prevention, slow down of cancer growth [2].

Many natural products that were driven from both terrestrial and aquatic life were widely used for the antitumor studies and studies that related to anticancer drug discoveries [3]. Terrestrial herbs and spices, plant, tree such as garlic, black cumin, turmeric, curcumin, *Eupatorium glutinosum*, and *Aniba panurensis* contains several bioactive compounds act as chemo-preventive, antimicrobial and antifungal agents [4-6]. To far, over 6,000 novel marine natural

products have already been discovered, including alkaloids and peptides, steroids and lipids, phenolic and quinoid chemicals. A small number of substances have been clinically evaluated and shown to have potent anticancer, antiviral, anti-inflammatory, haemolytic, and antinociceptive properties [7,8]. Compounds that derived from marine algae, fish, tunicates and marine invertebrates such as molluscs, echinoderms have the ability to act as an anticancer or cancer preventive compounds [9-11]. The marine fatty acids have been reported with different activities such as antimalarial, antimycobacterial, antifungal and anticancer [12,14]. According to [13], different bioactive peptides from different species of ascidia, sponges, molluscs has been reported with antitumor, antitubulin, anti-neoplastic and antiproliferative activities. The cancer cell growths are inhibited through the cytotoxic effects of natural compounds by attacking the macromolecules that present on the cancer cell surface and a large number of marine derived compounds showed anticancer effects in both in vitro and in vivo studies [15-17]. This review analyses recent studies and highlights the anticancer effect of aquatic organisms, with particular emphasis on aquatic plants and algae, actinomycetes, bacteria, fungi, sponges soft corals and fishes.

2. AQUATIC MICROORGANISMS AS ANTICANCER SOURCE

Microorganisms include protozoa, bacteria, fungi and members of plant kingdom. Bacteria, the smallest group of organisms abundant in both terrestrial and aquatic environment especially the autotropic bacteria which are the primary producers in aquatic systems [18]. In 2014, study conducted by [19] reported that the compounds isolated from Aspergillus terreus, a marine endophytic fungus associated with the marine seaweed Codium decorticatum has cytotoxicity against hepatocellular cancer cell line and low toxic effect on normal cells. Similarly, the sponge associated actinomycetes, Streptomyces sp. with promising anticancer effect against lung cancer cell by the induction of apoptosis [20]. lines The isolated marine actinomycete strain (HP411) has been reported with anticancer activity against different cancer cell lines like liver cancer cell line, cardiac and skeletal muscle cell line and membrane of the uterus cancer cell line [21]. Most recent study found that the Sea cucumber (Holoturia atra) associated bacteria, Sallinicoccus roseus and Sphingobium yanoikuyae produce more anticancer potency against murine leukemia cells (P388). They also found that the Sallinicoccus roseus with stronger anticancer activity that were cultivated in better nutrient containing A11 bacterial medium [22].

3. AQUATIC CILIATES AS ANTICANCER SOURCE

According to [23] ciliates are free-living aquatic diverse group which act as the predators of bacteria, algae and some protists. *Tetrahymena thermophilia*, a unicellular ciliate used in the production of anticancer monoclonal antibody- rituximab. The antibody that resulted has improved antibody-dependent cell-mediated cytotoxicity [24]. Study conducted by [25] found that the secondary metabolite extracted from *Euplotes crassus* has cytotoxic effect against the different cutaneous melanoma cells. They also identified that the cell migration at the molecular level was inhibited or decreased at the molecular level by the compound Euplotin C (EC). The compound reduced the aggressiveness of melanoma cell by controlling Erk and Akt pathways.

4. AQUATIC PLANTS AND ALGAE AS ANTICANCER SOURCE

There are many aquatic plants such as Arrow Arum, *Calla Palustris*, Bur-reeds, Chara, Large Leaf Pondweed, Wild celery etc. provide many beneficial effects including food and shelter for fish, filter water, assimilate nutrients and also contains several compounds that can be used in therapeutic studies [26,27]. The simple plant-like aquatic organism without true stems, leaves or roots comes under the group algae, with importance in production of oxygen from photosynthesis waste products, nitrogen fixation, and also act as environmental quality indicators [28]. Algae contain several bioactive molecules that are derivatives of peptides, carbohydrates, and lipids which can be act as natural molecules with anticancer potential or alternative to conventional drugs [9].

Recent in vitro study conducted by [29] in hornwort (Ceratophyllum demersum) reported that the ethanolic extract of hornwort has the cytotoxicity against the human colon cancer. In the case of methanolic extract of water hyacinth reported with increased human cervical cancer cell growth inhibition [30]. Several studies identified the anticancer or cancer preventive compounds present in different algal groups [9-11]. Further studies conducted in different extractions of marine algal groups such as Ulva lactuca, Ulva fasciata. Gracilaria edulis, Dictyota kunthii, Chondracanthus chamissoi exhibited increased or good cytotoxicity against different cancer cells that includes human breast cancer, epithelioid carcinoma, human prostate cancer, hepatocellular carcinoma [3133]. In 2018, [34] found that the methanolic extract of freshwater macroalgae *Cladophora surera* inhibit breast cancer cell (MCF-7) migration and adhesion. $20\mu \text{gmL}^{-1}$ were the lowest dose that significantly reduced MCF-7 cell number to 59.86%. The fucoidan isolated from the brown seaweed inhibit the human lung cancer cell from 24.9 to 73.5% in the concentrations of 31.25 to $500\mu \text{g/ml}$ in a dose-dependent manner [35].

5. AQUATIC INVERTEBRATES AS ANTICANCER SOURCE

Animals without backbone is termed as invertebrates, are the diverse and abundant group that found in the aquatic system consist of worms, mollusks, insects etc. Most of the invertebrates present in the aquatic sediments are the indicators of aquatic ecosystem health and diversity [36]. Several studies conducted different sponges, *Dysidea avara, Spheciospongia vagabunda, Negombata magnifica, Negombata corticate* revealed that they possess high to moderate cytotoxic potency against breast cancer, myeloma, leukemia and liver cancer via increasing apoptosis activity [37,38].

Moderate inhibition activity of different sponges and soft corals towards the breast cancer (MCF-7) and lung cancer cells (HepG2) were identified by researchers in their studies. They found that Negombata corticate with highest activity against HepG2 with a concentration of 16.3µg/ml and Sarcophyton glaucum with highest activity against MCF-7 with a concentration of 18.7µg/ml [38]. Biomacromolecules present in different groups of snails were effectively used for the treatment of bladder cancer [39]. They were able to find that the Biomacromolecules (Hemocyanin) from Helix lucorum induce cytotoxicity and apoptosis against bladder cancer cells. The hemolymph extract of brachyuran crab (Calappa calappa) has been reported with increased cytotoxicity by reducing different cancer cell viability [40].

6. FISH AS ANTICANCER SOURCE

Fish form an important part of human diet due to its nutritional content such as high protein, low fat, essential amino acids, vitamins, minerals and essential fatty acids such as omega-3 fatty acids [41]. In 2020, the cell viability inhibition of Mediterranean mesopelagic fish species- lantern fish (*Myctophum punctatum*) & Mediterranean krill (*M. norvegica*) were studied and found that the lanternfish has more activity against breast cancer cell and lung cancer cells. *M. norvegica* was reported with high potency against hepatocyte carcinoma [42]. Researchers

reported that the acetic acid extract of skin, liver, intestine and muscle of puffer fish (Arothron stellatus) possessed anticancer activity with percentage of cell inhibition 15%, 34%, 7% and 5% respectively [43]. The lipid extract of Labeo rohita inhibit prostate cancer cells (PC3) via changing the morphology, decrease the number of cells and induce apoptosis in cancer cell lines. Different doses of total fish lipids (10, 25 and 50 mg/ml) caused the reduction of the PC3 cells (84.81%, 44.57%, and 27.04% respectively) [44]. The pituitary adenylate cyclaseactivating peptide from North African catfish has been identified as a regulatory neuropeptide not only act as antibacterial agent but also act as an antiproliferative agent that control the growth of human non-small cell lung cancer [45].

Study conducted by [46] investigated the anticancer activity of fractionated eel protein hydrolysate (EPH) against breast cancer cell lines and identified that decrease in the molecular weight of EPH increases the cancer cell growth inhibition. Polyunsaturated fatty acid extracts of sardine fish and crude epidermal mucus of mullet fish has the ability to control the growth of cancer cells which includes breast cancer, prostate cancer and laryngeal cancer cell lines respectively [47,48]. According to the American Institute of Cancer Research, increased consumption of fish reduced the risk of liver, colon and breast cancer and the meta-analysis of fish consumption with lung cancer revealed its protective aspect [49,50]. Another finding that related to the anticancer activity of fish is that the by-products from fishes like salmon, barramundi, wild caught flathead and silver warehou contained the anticarcinogenic peptides, which opened the entry of the products into pharmaceutical industry [51]. Most recent study conducted in 2021 revealed that the use of fish oil in combination with selenium increase the efficacy of Avastin, which used for the treatment of different type of cancer. And this particular study found that the combinations enhance the therapeutic activity of Avastin through targeting multiple pathways and act against triple negative breast cancer (TNBC) in dose dependent manner [52].

7. CONCLUSION

Recent years, the attention towards the natural products that derived from aquatic system were increasing for different therapeutic activity, especially for the anticancer activities. Most of the recent studies conducted in different aquatic organisms such as aquatic microorganisms or associated ones, plants, seaweeds, algae, sponges, corals, and different fish species revealed that they possessed cytotoxic potency against several types of cancer cell lines. From different studies it can be concluded that these organisms are real boon for the therapeutic research, which are highly effective towards the breast cancer, lung cancer, cervical cancer, prostate cancer and leukemia. Further intensive investigations are needed to establish a clear idea about the functioning of aquatic organisms against different cancer cells. The summarized data of different aquatic organisms and their compound effects upon tumor growth, cancer cell viability and induction of apoptosis are presented in the Table 1.

Aquatic source organisms	Species	Extract/ Compound	Cancer	Cell line used	Effect of extract/ compound	Inhibitory concentration/ IC ₅₀	Reference
Sea cucumber (Holoturia atra) associated bacteria	Sallinicoccus roseus (HPP.4A) Sphingobium yanoikuyae (HPP.T13)	Extracted using 1- butanol with maceration method	Murine leukemia cell	P388	Produce more anticancer potency	-	[22]
Sponge associated endosymbiotic actinomycete	Streptomyces sp (MCCB 267)	Crude extract	Non- Small Cell Lung Cancer	NCI- H460	Induction of apoptotic pathways leading to cell death	IC ₅₀ = 2.3μg/ mL (NCI-H460)	[20]
Marine Actinomycete Strain	Streptomyces variabilis (HP411)	Active strains	Liver cancer cell line Cardiac and skeletal	Hep- G2 RD	Changed shape and lost cell contacts, cells lost their	$\frac{IC_{50}=13.7 \ \mu g/ml}{(Hep-G2)}$ $\frac{IC_{50}=40 \ \mu g/ml}{(skeletal}$	[21]
			muscle cell line Cervical carcinoma	FL	surface morphology	muscle) IC ₅₀ =4.41 μ g/ml (cardiac RD) IC ₅₀ =12.6 μ g/ml (FL)	
Seaweed endophytic fungus	Aspergillus terreus	Active fraction of <i>Aspergillus</i> <i>terreus</i> (F7 and F8)	Hepato- cellular carcinoma	HepG2	Potential cytotoxicity	GI ₅₀ of F8 on HepG2 cancer cell line was <10	[19]
Marine Ciliate	Euplotes crassus	Euplotin C	Human Melanoma Cells	A375, 501Me l, MeWo.	Cytotoxic potency, proapoptotic activity and a decrease in melanoma cell migration	$IC_{50} = 3.53 \pm 0.19 \mu M$ (A375) $IC_{50} = 2.68 \pm 0.29 \mu M$ (501Mel) $IC_{50} = 3.56 \pm 0.38 \mu M$ (MeWo)	[25]
Freshwater ciliate	Tetrahymena thermophila	Monoclonal antibody production	Mammalian cell lines	-	Increased cytotoxicity	-	[24]
Hornwort (Aquatic plant)	Ceratophyllum demersum	Ethanol extract	Human colon malignant growth cell line	HT-29	Cytotoxicity	800µg/ml of ethanol extract - growth inhibition (Cell viability: 46.18±0.61)	[29]

Table 1. Effect of different aquatic sources on different cancer cell lines

Aparna and Ampili; UPJOZ, 42(22): 57-67, 2021

Water hyacinth (Mart)	Eichhornia crassipes	Methanol extract	Human cervical cancer cell line	HeLa	Increases the cell growth inhibition	IC ₅₀ =32.33µg/m L (HeLa)	[30]
Marine Macroalgae	Ulva lactuca Ulva fasciata	Seaweed chloroform extract	Human breast cancer	MCF-7 Hela	Cytotoxic activity	U. lactuca extract $IC_{50}=10.83\pm1.0$, (MCF-7)	[31]
	,		Epithelioid Carcinoma	cell lines		IC ₅₀ =12.43 \pm 1.3 µg/ml (Hela)	
			Human prostate cancer	PC3		U. fasciata extract $IC_{50}=12.99\pm1.2$	
			Hepatocellul HepG2 ar			μg/ml (PC3)	
	<i>c</i>		carcinoma	1001	0 14 14	$IC_{50}=16.75\pm1.5$ µg/ml (HepG2)	[20]
algae	<i>edulis</i>	extract	cancer cell line	MDA- MB231	over cancer cell line	A maximum of 94.06% cell viability for 20µg of crude methanolic extract	[32]
Brown seaweed (Algae)	Dictyota kunthii,	Sequential extract	Human colorectal adenocarcin oma	HT-29,	Cytotoxic activity	D. kunthii 23.81 ± 1.98% cellular viability	[33]
Red seaweed (Algae)	Chondracanthu s chamissoi.		Human breast adenocarcin oma	MCF-7		C. chamissoi 29.28 \pm 2.60% cellular viability	
Freshwater macroalga	Cladophora surera	Algal extract (methanol)	Human breast cancer	MCF-7 cells	Inhibit cell migration and adhesion	20 µgmL ⁻¹ lowest dose that significantly reduced cell number to 59.86%.	[34]
Brown seaweed	Turbinaria conoides	Fucoidan	Human lung cancer	A549	Moderate cytotoxicity	Anticancer activity from 24.9 to 73.5% in the concentrations of 31.25 to 500 µg/ml in a dose- dependent manner	[35]
Purple sponge	Dysidea avara	Ethanolic extract	Myeloma Human breast cancer	H929 MCF-7	Cytotoxic effect, High capacity of inducing apoptosis	IC ₅₀ =2.91 \pm 0.51µg/mL (H929) IC ₅₀ =11.51 \pm 1.94µg/mL	[37]
			Chronic	К 362		(MCF/)	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				myelogenou				
Sponge Spheciospongia Extract vagabunda, Human ervical earcinoma HCI1 IC ₉ =5.11 ± 0.72µg/mL Sponge Spheciospongia Extract vagabunda, Breast eancer cell ine MCF-7 Cytotoxicity N. corricate UC ₉ =17.54 ± 2.28µg/mL Sponge Spheciospongia Extract vagabunda, Breast eancer cell ine MCF-7 Cytotoxicity N. corricate UC ₉ =16.3 ± 2.4740.67µg/ml Sponge Spheciospongia Extract vagabunda, Breast eancer cell ine MCF-7 Cytotoxicity N. corricate UC ₉ =16.3 ± 2.4740.67µg/ml Soft corals Sarcophyton auritum Extract S. vagabunda UC ₉ =18.1±0.68 Sarcophyton glaucum Extract S. vagabunda UC ₉ =19.3±0.18 Sigurum S. sauritum UC ₉ =19.3±0.18 S. sauritum UC ₉ =19.3±0.18 Mollusca Helfx lucorum Biomacromo Iccules CAL- cancer cell Induction of 2.5 µg/ml on HepG2, MCF-7 respectively Mollusca Helfx lucorum (HH) Biomacromo Iccules CAL- cancer cell Induction of 2.5 µg/ml on HepG2, MCF-7 respectively [39] inhubiton ecllis reduced to				s leukemia			$IC_{ro} = 7.17 +$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				5 leukenna			1.30 ug/mI	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Human	HeI a		(K 562)	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				cervical	HeLu		(1002)	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				carcinoma	HCT1		$IC_{co} = 5.11 + 100$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				curentoniu	16		$0.72 \mu g/mL$	
Sponge Spheciospongia Extract vagabunda, Negombata magnifica, corlicate Breast HepG2 MCF-7 Cytotoxicity V. corricate (ICT116) [38] Negombata magnifica, corlicate Liver cancer cell line HepG2 24,7±0,67µg/ml Soft corals Sarcophyton auritum Extract Extract Sv agabunda (CF-7 respectively Soft corals Sarcophyton glaucum Extract Sv agabunda (CS-7 Sv agabunda (CS-7 Sarcophyton glaucum Extract S glaucum (CS-7 S glaucum (CS-7 S glaucum (CS-7) Sarcophyton glaucum NCF-7 respectively S glaucum (CS-7) Negombata NCF-7 respectively Sarcophyton glaucum S glaucum (CS-7) S glaucum (CS-7) Sarcophyton glaucum Note-7 respectively S auritum (CS-7) S auritum (CS-7) S auritum (CS-7) Sarcophyton glaucum Nagnifica (CS-7) S auritum (CS-7) S Sarcophyton glaucum Nagnifica (CS-7) S auritum (CS-7) Note-7 respectively S auritum (CS-7) S Sarcophyton glaucum S auritum (CS-7) S auritum (CS-7) Note-7 respectively S auritum (CS-7) S auritum (CS-7)				Human	10		(HeI a)	
Sponge Spheciospongia Extract vagabunda, Breast Breast magnifica, MCF-7 Cytotoxicity N. corticate N. corticate Constrained (Constrained) [38] Negombata magnifica, HepG2 24.7±0.67µg/ml 0.24µg/ml, [38] Negombata magnifica, Liver cancer cell line 0.24µg/ml, [38] Soft corals Sarcophyton auritum Extract Soft corals S. vagabunda Sarcophyton glaucum S. vagabunda Corticate Soft corals Sarcophyton glaucum S. vagabunda Extract S. vagabunda Corticate S. vagabunda Corticate Soft corals Sarcophyton glaucum S. glaucum Corticate S. glaucum Corticate S. glaucum Corticate Soft corals S. glaucum NCF-7 respectively S. glaucum Corticate S. glaucum Corticate Mollusca Heltk lucorum Biomacromo Bladder (Hilth) CAL- lecules cancer cell CAL- approsis, incubition of Rapana venosa n) (RovH) CAL- cell vabitiv dose and Induction of 72 hours of incubition, the respiratory cell vabitiv activity of the cells reduced to				colon cancer			(IICLu)	
Sponge Spheciospongia Extract vagabunda, Negombata magnifica, corticate Breast cancer cell line MCF-7 Cytotokicity wcorticate line K corticate UC ₃₀ =16.3± 0.24µg/ml, on HepG2, cell line [38] Soft corals Liver cancer cell line Liver cancer cell line MCF-7 respectively S. vagabunda UC ₃₀ =28,1±0.68 µg/ml, 19.7±0.3µg/ml on HepG2, CG, CG, glaucum Soft corals Sarcophyton glaucum Extract S. vagabunda UC ₃₀ =28,1±0.68 µg/ml, 19.7±0.3µg/ml on HepG2, MCF-7 respectively Soft corals Sarcophyton glaucum S. vagabunda UC ₅₀ =19.2±0.49 µg/ml, 21.1±0.7µg/ml on HepG2, MCF-7 respectively S. glaucum UC ₅₀ =19.2±0.49 µg/ml, 21.1±0.7µg/ml on HepG2, MCF-7 respectively Mollusca Helix lucorum Biomacromo Bladder (HIH) CAL cancer cell 29 cancer cell 29 mihibition of Rapana venosa n) (RoH) CAL cancer cell 29 mihibition of cell viability activity of the cells reduced to				cell line			$IC_{50} = 17.54 \pm$	
Sponge Spheciospongia Extract vagabunda, Breast cancer cell line MCF-7 Cytotoxicity (Negoribata magnifica, N. corricate [38] Negombata magnifica, Liver cancer cell line HepG2 24,7±0.67µg/ml 24,27±0.67µg/ml Soft corals Sarcophyton auritum Extract Sarcophyton glaucum KCF-7 respectively So vagabunda Close - 28,1±0.68 µg/ml, 19,7±0.3µg/ml Soft corals Sarcophyton glaucum Extract S. vagabunda Close - 28,1±0.68 µg/ml, 19,7±0.3µg/ml S. vagabunda Close - 28,1±0.68 µg/ml, 19,7±0.3µg/ml Sarcophyton glaucum Extract S. glaucum Close - 28,1±0.68 µg/ml, 18,7±0.51µg/ml S. glaucum Close - 28,1±0.68 µg/ml, 18,7±0.51µg/ml Sarcophyton glaucum S. glaucum Close - 28,1±0.08 µg/ml, 18,7±0.51µg/ml S. glaucum Close - 28,1±0.08 µg/ml, 18,7±0.51µg/ml Mollusca Heltx lucorum Biomacromo Bladder (HiH) CAL could could coul				••••			$2.28 \mu g/mL$	
Sponge Spheciospongia Extract vagabunda, Breast cancer cell ine MCF-7 Cytotoxicity N. coriticate (Control = 16.34) [38] Negombata magnifica, Liver cancer cell line HepG2 24.7±0.67µg/ml 0.24µg/ml, Soft corals Sarcophyton auritum Extract HepG2 24.7±0.67µg/ml 0.7 Soft corals Sarcophyton glaucum Extract Figure 1.048 Extract Page 2.10.68 Sarcophyton glaucum Sarcophyton glaucum S. vagabunda CG-7 respectively S glaucum S. glaucum CG-7 respectively S. glaucum S. glaucum S. glaucum S. glaucum CG-7 respectively S. glaucum S. glaucum S. glaucum CG-7 respectively S. glaucum S. glaucum S. glaucum S. glaucum CG-7 S. glaucum CG-7 respectively S. auritum CG-7 S. glaucum CG-7 respectively S. auritum CG-7 S. glaucum CG-7 respectively N. magnifica CG-7 S. glaucum CG-7 S. glaucum CG-7 respec							(HCT116)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sponge	Spheciospongia	Extract	Breast	MCF-7	⁷ Cytotoxicity	N. corticate	[38]
Negombata Iine 0.24µg/ml, Negombata HepG2 24,74.067µg/ml magnifica, Liver cancer on HepG2, corticate S. vagombata respectively Soft corals Sarcophyton Sarcophyton auritum Extract S. vagombata Sarcophyton ettract S. vagombata glaucum MCF-7 respectively Sarcophyton on HepG2, glaucum MCF-7 respectively S. glaucum Imagnifica Imagnifica (Cg-7) Respectively S. glaucum S. glaucum Imagnifica Imagnifica (Cg-7) respectively S. glaucum S. glaucum Imagnifica Imagnifica (Cg-7) respectively S. glaucum S. glaucum Imagnifica Imagnifica (Cg-7) respectively S. auritum Imagnifica (Cg-7) respectively S. auritum Imagnifica (Cg-7) respectively Mollusca Helix lucorum Biomacromo Bladder CAL- (HHH) Icouels Imagnifica Imagnifica <td>-121</td> <td>vagahunda.</td> <td></td> <td>cancer cell</td> <td></td> <td>-)</td> <td>$IC_{50} = 16.3 \pm$</td> <td>[]</td>	-121	vagahunda.		cancer cell		-)	$IC_{50} = 16.3 \pm$	[]
Negombata magnifica, cell line HepG2 cell line 24.7±0.67µg/ml on HepG2, MCF-7 Soft corals Sarcophyton auritum respectively Sarcophyton glaucum Extract S. vagabunda IC ₃₀ =28.1±0.68 µg/ml, 19.7±0.3µg/ml Sarcophyton glaucum MCF-7 respectively Sarcophyton glaucum S. glaucum MCF-7 respectively S. glaucum IC ₅₀ =19.3±0.18 µg/ml, 18.7±0.51µg/ml on HepG2, MCF-7 respectively S. auritum IC ₅₀ =19.2±0.49 µg/ml, 21.1±0.72µg/ml on HepG2, MCF-7 respectively Mollusca Helix lucorum (HH) Biomacromo Bladder (HH) CAL- Rapana venosa n) Call		0 /		line			$0.24 \mu g/ml$	
magnifica, vegombata corticate Liver cancer cell line on HepG2, MCF-7 Soft corals Sarcophyton auritum Extract S. vagobunda Sarcophyton glaucum Extract S. vagobunda Sarcophyton glaucum Sarcophyton glaucum S. vagobunda Sarcophyton glaucum S. vagobunda IC ₃₀ =28.140.68 Kores MCF-7 respectively S. glaucum S. glaucum MCF-7 Soft corals S. glaucum Negombata Sarcophyton glaucum S. glaucum Negonbata Soft corals S. glaucum S. glaucum Negombata S. glaucum Negonbata Nore-7 respectively S. auritum IC ₅₀ =19.2±0.31g/ml on HepG2, MCF-7 Negonbata Soft corals S. auritum S. glaucum Nore-7 respectively S. auritum Nore-7 respectively S. auritum Nore-7 respectively N. magnifica NCS-7 Respectively N. magnifica NCF-7 respectively S. Stato Mollusca Helix lucorum Biomacromo Bladder CAL- (HHI) lecules cancer cell 29 (Hemocyani CAL- Induction of		Negombata			HepG2		24.7±0.67µg/ml	
Negombata corticate cell line MCF-7 respectively Soft corals Sarcophyton auritum Extract S. vagabunda Cog-28,1±0.68 µg/ml, 19.7±0.3µg/ml on HepG2, MCF-7 respectively Sarcophyton glaucum S. vagabunda Cog-28,1±0.68 µg/ml, 18.7±0.5µg/ml on HepG2, MCF-7 respectively S. glaucum Cog-19.3±0.18 µg/ml, 18.7±0.5µg/ml on HepG2, MCF-7 respectively Mollusca Helix lucorum (HH) Biomacromo Bladder (HH) CAL- 29 Induction apoptiosi, inhibition of Rapana venosa n) CAL- cell induction (RvH) Induction (Sig-19.2±0.37 µg/ml, 25.8±0.9µg/ml on HepG2, MCF-7 respectively		magnifica.		Liver cancer	-1 -		on HepG2.	
Negombata corticate respectively Soft corals Sarcophyton aurium Extract Sarcophyton glaucum Extract P/Full 3/Jug/ml on HepG2, MCF-7 respectively S. glaucum IC ₅₀ =19.340.18 µg/ml, 18.7±0.51µg/ml on HepG2, MCF-7 respectively S. glaucum IC ₅₀ =19.340.18 µg/ml, 18.7±0.51µg/ml on HepG2, MCF-7 respectively S. glaucum IC ₅₀ =19.2±0.18 µg/ml, 21.1±0.72µg/ml on HepG2, MCF-7 respectively Mollusea Helix lucorum (HHI) Biomacromo Bladder (HHI) CAL- iccure cancer cell 29 Rapana venosa n) Induction of respiratory cell viability activity of the cells reduced to				cell line			MCF-7	
Soft corals Soft corals Sarcophyton auritum Extract Sarcophyton glaucum Sarcophyton Sarcophyton glaucum Sarcophyton Sarco		Negombata					respectively	
Soft corals Sarcophyton auritum Extract IC ₅₀ =28.1±0.68 µg/ml, 19.7±0.3µg/ml Sarcophyton glaucum MCP-7 respectively MCP-7 respectively S. yagabunda IC ₅₀ =28.1±0.68 µg/ml, 19.7±0.3µg/ml NCP-7 respectively S. glaucum S. yagabunda IC ₅₀ =19.3±0.18 µg/ml, 18.7±0.51µg/ml NCP-7 respectively S. glaucum S. yagabunda IC ₅₀ =19.2±0.49 µg/ml, 21.1±0.72µg/ml NCF-7 respectively S. auritum NC ₅₀ =18.2±0.49 µg/ml, 21.1±0.72µg/ml N. magnifica IC ₅₀ =19.2±0.37 µg/ml, 25.8±0.9µg/ml NCF-7 respectively N. magnifica IC ₅₀ =19.2±0.37 µg/ml, 25.8±0.9µg/ml NCF-7 respectively N. magnifica IC ₅₀ =19.2±0.37 µg/ml, 25.8±0.9µg/ml Mollusca Helix lucorum (HIH) Biomacromo Bladder (Hemocyani CAL- 29 Induction of apoptosis, inhibition of (RVH) Tobus of respiratory		corticate						
$\begin{array}{c c} Sarcophyton \\ auritum \\ Sarcophyton \\ glaucum \\ \end{array} \\ \begin{array}{c} Sarcophyton \\ Sarcophyton \\ glaucum \\ \end{array} \\ \begin{array}{c} Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ MCF-7 \\ \end{array} \\ \begin{array}{c} Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ MCF-7 \\ \end{array} \\ \begin{array}{c} Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ Sarcophyton \\ MCF-7 \\ \end{array} \\ \begin{array}{c} Sarcophyton \\ Sarco$	Soft corals						S. vagabunda	
auritum Extract µg/ml, 19,7±0.3µg/ml Sarcophyton glaucum MCF-7 respectively S. glaucum IC ₅₀ =19.3±0.18 µg/ml, 18,7±0.51µg/ml n HepG2, MCF-7 MCF-7 respectively S. auritum 0 HepG2, MCF-7 MCF-7 respectively S. auritum 10,750=18.2±0.49 µg/ml, 21.1±0.72µg/ml 0 HepG2, MCF-7 N. magnifica 10,750=18.2±0.37 µg/ml, 25.8±0.9µg/ml 0 HepG2, MCF-7 N. magnifica 10,750=18.2±0.37 µg/ml, 25.8±0.9µg/ml 0 HepG2, MCF-7 Tespectively Mollusca Helix lucorum Biomacromo Bladder (HIH) CAL- lecules Induction of apoptosis, inhibition of Rapana venosa n) 72 hours of incubation, the respiratory activity of the cell viability		Sarcophyton					$IC_{50}=28.1\pm0.68$	
Sarcophyton i9.7±0.3µg/ml glaucum on HepG2, MCF-7 respectively S. glaucum IC ₅₀ =19.3±0.18 µg/ml, 18.7±0.51µg/ml on HepG2, MCF-7 respectively S. auritum IC ₅₀ =18.2±0.49 µg/ml, µg/ml, 21.1±0.72µg/ml on HepG2, MCF-7 respectively S. auritum IC ₅₀ =18.2±0.49 µg/ml, µg/ml, 21.1±0.72µg/ml on HepG2, MCF-7 respectively N. magnifica IC ₅₀ =19.2±0.37 µg/ml, 25.8±0.9µg/ml on HepG2, MCF-7 respectively Mollusca Helix lucorum Biomacromo Bladder CAL- (HIH) lecules cancer cell (HHH) lecules cancer cell (Hemocyani cancer cell 29 inhibition of respiratory activity of the cells reduced to		auritum	Extract				μg/ml,	
Sarcophyton glaucum on HepG2, MCF-7 respectively S. glaucum IC ₃₀ =19.3±0.18 µg/ml, 18.7±0.51µg/ml on HepG2, MCF-7 respectively S. glaucum IC ₃₀ =19.3±0.18 µg/ml, 21.1±0.72µg/ml on HepG2, MCF-7 respectively Mollusca Helix lucorum (HIH) Biomacromo Bladder lecules (Hemocyani (RvH) CAL- Induction of apoptosis, inhibition of Rapana venosa n) Induction of apoptosis, inhibition of cell viability activity of the cells reduced to							19.7±0.3µg/ml	
$\begin{array}{c} glaucum & MCF-7 \\ respectively & \\ S. glaucum \\ IC_{s0}=19.3\pm0.18 \\ \mu g'ml, \\ 18.7\pm0.51 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively & \\ S. auritum \\ IC_{s0}=18.2\pm0.49 \\ \mu g'ml, \\ 21.1\pm0.72 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively & \\ N. magnifica \\ IC_{s0}=19.2\pm0.37 \\ \mu g'ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively & \\ N. magnifica \\ IC_{s0}=19.2\pm0.37 \\ \mu g'ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively & \\ N. magnifica \\ IC_{s0}=19.2\pm0.37 \\ \mu g'ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively & \\ \hline Mollusca & Helix lucorum \\ Helmocyani \\ (Huth) & ecules \\ (Hemocyani \\ (RvH) & \\ (RvH) & \\ \hline \end{array}$		Sarcophyton					on HepG2,	
Mollusca Helix lucorum (HIH) Biomacromo Bladder lecules (Hemocyani CAL- els reduced to apoptosis, inhibition of Rapana venosa n) Rapana venosa n) (RyH) S. glaucum S. glaucum (Ryml) S. glaucum (R		glaucum					MCF-7	
$\frac{S. glaucum}{IC_{50}=19.3\pm0.18}$ $\mu g/ml,$ $18.7\pm0.51 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{S. auritum}{IC_{50}=18.2\pm0.49}$ $\mu g/ml,$ $21.1\pm0.72 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9 \mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\frac{N. magnifica}{IC_{50}=19.2\pm0.37$ $\frac{N. magnifica}{IC_{5$		0					respectively	
$ \begin{array}{c} S. glaucum \\ IC_{50}=19.3\pm0.18 \\ \mu g/ml, \\ 18.7\pm0.51 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \\ \hline S. auritum \\ IC_{50}=18.2\pm0.49 \\ \mu g/ml, \\ 21.1\pm0.72 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \\ \hline N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \\ \hline \hline N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \\ \hline \hline N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9 \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \\ \hline \hline \hline Mollusca \\ \hline Helix lucorum \\ Helix lucorum \\ (HH) \\ lecules \\ (Hemocyani \\ (Hemocyani \\ (R)H) \\ \hline \end{array} $							1 2	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							S. glaucum	
$ \begin{array}{c} \mu g/ml, \\ 18.7\pm0.51\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} S. auritum \\ IC_{50}=18.2\pm0.49 \\ \mu g/ml, \\ 21.1\pm0.72\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml \\ on HepG2, \\ MCF-7 \\ respectively \end{array} \\ \begin{array}{c} N. magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml \\ OI \\ O$							IC ₅₀ =19.3±0.18	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							μg/ml,	
Mollusca Helix lucorum Biomacromo Bladder (HIH) CAL- lecules (Hemocyani CAL- (BVH) Induction of apoptosis, (ReyH) 72 hours of incubation, the respiratory Mollusca Helix lucorum (RVH) Biomacromo Bladder (RVH) CAL- (18.7±0.51µg/ml	
$\begin{array}{c c} MCF-7\\ respectively\\ $$S. auritum\\ IC_{50}=18.2\pm0.49\\ \mu g/ml,\\ 21.1\pm0.72\mu g/ml\\ on \ HeG2,\\ MCF-7\\ respectively\\ $$N. magnifica\\ IC_{50}=19.2\pm0.37\\ \mu g/ml,\\ 25.8\pm0.9\mu g/ml\\ on \ HeG2,\\ MCF-7\\ respectively\\ $$N. magnifica\\ IC_{50}=19.2\pm0.37\\ \mu g/ml,\\ 25.8\pm0.9\mu g/ml\\ on \ HeG2,\\ MCF-7\\ respectively\\ $$$Mollusca $$Helix \ lucorum $$Biomacromo Bladder$ (CAL- Induction of $$Helix \ lucorum $$Biomacromo Bladder$ (HIH) $$ lecules $$ cancer cell $$ 29 $$ inhibition of $$ respiratory$ respiratory$ activity of the $$ cells reduced to $$ cells reduced to $$ to$							on HepG2,	
respectivelyS. auritum $IC_{50}=18,2\pm0.49$ $\mu g/ml,$ $21.1\pm0.72\mu g/ml$ on HepG2, MCF-7 respectivelyS. auritum $IC_{50}=18,2\pm0.49$ $\mu g/ml,$ $21.1\pm0.72\mu g/ml$ on HepG2, MCF-7 respectivelyN. magnifica $IC_{50}=19.2\pm0.37$ $\mu g/ml,$ $25.8\pm0.9\mu g/ml$ on HepG2, MCF-7 respectivelyN. magnifica $IC_{50}=19.2\pm0.37$ $\mu g/ml,$ $25.8\pm0.9\mu g/ml$ on HepG2, MCF-7 respectivelyMolluscaHelix lucorum (HIH)Biomacromo Bladder ecucer cell (HemocyaniCAL- 29 inhibition of respiratory cell viability activity of the cells reduced to[39] incubation, the respiratory							MCF-7	
$\frac{S. auritum}{IC_{50}=18.2\pm0.49}$ $\mu g/ml,$ $21.1\pm0.72\mu g/ml$ on HepG2, MCF-7 respectively $\frac{N. magnifica}{IC_{50}=19.2\pm0.37}$ $\mu g/ml,$ $25.8\pm0.9\mu g/ml$ on HepG2, MCF-7 respectively $\frac{MOllusca}{(HlH)}$ $\frac{Helix lucorum}{lecules}$ $\frac{Biomacromo}{cancer cell}$ $\frac{CAL}{29}$ $\frac{Induction of}{apoptosis,}$ $\frac{72 hours of}{incubation, the}$ $\frac{[39]}{incubation, the}$ $\frac{respiratory}{respiratory}$ $\frac{respiratory}{activity of the}$ $\frac{reslivity of the}{cells reduced to}$							respectively	
$\begin{array}{c} \text{IC} \text{So} = 18.2 \pm 0.49 \\ \mu \text{g/ml}, \\ 21.1 \pm 0.72 \mu \text{g/ml} \\ 21.1 \pm 0.72 \mu \text{g/ml} \\ \text{on HepG2}, \\ \text{MCF-7} \\ \text{respectively} \end{array}$							S auritum	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$IC_{co}=18.2\pm0.49$	
MolluscaHelix lucorum (HIH)Biomacromo Bladder lecules (HemocyaniCAL- 29Induction of apoptosis, inhibition of cell viability dose- and72 hours of incubation, the respiratory39]MolluscaHelix lucorum (RvH)Biomacromo Bladder (RvH)CAL- cancer cellInduction of 2972 hours of incubation, the respiratory39]							ug/ml	
$\begin{array}{c} \text{Mollusca} & Helix lucorum \\ (H1H) \\ Rapana venosa n) \\ (RvH) \end{array} \begin{array}{c} \text{N. magnifica} \\ \text{IC}_{50}=19.2\pm0.37 \\ \mu g/ml \\ 25.8\pm0.9\mu g/ml \\ on \text{HepG2}, \\ \text{MCF-7} \\ \text{respectively} \end{array}$							$21 1\pm 0.72 \mu g/ml$	
MCF-7 respectively MCF-7 respectively N. magnifica IC ₅₀ =19.2±0.37 µg/ml, 25.8±0.9µg/ml on HepG2, MCF-7 mollusca Helix lucorum Biomacromo Bladder CAL- (HIH) lecules cancer cell 29 apoptosis, incubation, the respiratory respiratory Rapana venosa n) cell viability (RvH) dose- and							on HepG2	
MolluscaHelix lucorum (HIH)Biomacromo Bladder lecules (HemocyaniCAL- 29Induction of apoptosis, inhibition of cell viability activity of the cells reduced to39]MolluscaHelix lucorum (RvH)Biomacromo Bladder lecules (RvH)CAL- 29Induction of apoptosis, inhibition of cell viability activity of the cells reduced to72 hours of incubation, the respiratory activity of the cells reduced to							MCF-7	
$\begin{array}{c} N. \ magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ on \ HepG2, \\ MCF-7 \\ respectively \end{array}$ $\begin{array}{c} Mollusca \qquad Helix \ lucorum \\ (HIH) \qquad lecules \\ (Hemocyani \qquad cancer \ cell \\ Parama venosa \ n) \\ (RvH) \qquad dose- \ and \qquad cells \ reduced \ to \end{array}$ $\begin{array}{c} S. \ magnifica \\ IC_{50}=19.2\pm0.37 \\ \mu g/ml \\ on \ HepG2, \\ MCF-7 \\ respectively \qquad for all \ for all \$							respectively	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							1	
$\begin{array}{cccc} & IC_{50}=19.2\pm0.37 \\ & \mu g/ml, \\ 25.8\pm0.9\mu g/ml \\ & on HepG2, \\ MCF-7 \\ & respectively \end{array}$ $\begin{array}{cccc} Mollusca & Helix lucorum \\ (H1H) & lecules \\ (Hemocyani \\ Rapana venosa n) \\ & (RvH) \end{array}$ $\begin{array}{cccc} CAL- \\ 29 \\ & apoptosis, \\ & inhibition of \\ & cell viability \\ & activity of the \\ & cells reduced to \end{array}$ $\begin{array}{cccc} IO(1) \\ IO(1) \\ & IO(2) \\ $							N. magnifica	
Mollusca Helix lucorum (HIH) Biomacromo Bladder lecules (Hemocyani CAL- 29 Induction of apoptosis, inclubation, the respiratory 72 hours of inclubation, the respiratory [39] Rapana venosa (RvH) N CAL- (Hemocyani Induction of apoptosis, inhibition of dose- and 72 hours of respiratory [39]							$IC_{50}=19.2\pm0.37$	
Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Rapana venosa n) cell viability activity of the cells reduced to							μg/ml,	
Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Mollusca Helix lucorum Biomacromo Bladder CAL- Induction of 72 hours of [39] Rapana venosa n) CAL- CAL- Induction of respiratory [39] (RvH) dose- and cells reduced to cells reduced to							25.8±0.9µg/ml	
MCF-7 respectively Mollusca Helix lucorum (HIH) Biomacromo Bladder lecules (Hemocyani CAL- 29 Induction of apoptosis, inhibition of respiratory 72 hours of incubation, the respiratory [39] Rapana venosa n) CAL- (RvH) Induction of cell viability 72 hours of incubation, the cell viability [39]							on HepG2,	
Mollusca Helix lucorum (HIH) Biomacromo Bladder lecules (Hemocyani CAL- scancer cell Induction of 29 72 hours of apoptosis, incubation, the respiratory [39] Rapana venosa n) Rapana venosa n) cell viability dose- and cells reduced to							MCF-7	
MolluscaHelix lucorum (HIH)Biomacromo Bladder lecules (HemocyaniCAL- 29Induction of apoptosis, incubation, the respiratory cell viability dose- andT2 hours of respiratory[39]Rapana venosa (RvH)n)cancer cell venosa29apoptosis, respiratory cell viability dose- andcativity of the cells reduced to							respectively	
(HIH)leculescancer cell29apoptosis,incubation, the(Hemocyaniinhibition ofrespiratoryRapana venosa n)cell viabilityactivity of the(RvH)dose- andcells reduced to	Mollusca	Helix lucorum	Biomacromo	Bladder	CAL-	Induction of	72 hours of	[39]
(Hemocyani <i>Rapana venosa</i> n) (<i>RvH</i>) <i>Rapana venosa</i> n) <i>Rapana venosa</i> n) <i>Rap</i>		(HlH)	lecules	cancer cell	29	apoptosis	incubation the	[]
Rapana venosa n)cell viabilityactivity of the cells reduced to		()	(Hemocvani			inhibition of	respiratory	
(<i>RvH</i>) dose- and cells reduced to		Rapana venosa	n)			cell viability	activity of the	
		(RvH)	,			dose- and	cells reduced to	

crenulata and to 41% with (KLH) 150 µg/mL of RvH MCF-7 Cytotoxicity, Brachyuran Hemolymph Breast $IC_{50} = 75 \ \mu g \ mL^{-} [40]$ Calappa cancer cell reduced the ¹ (MCF-7) calappa cell viability line HepG2 $IC_{50} = 100 \mu g$ $mL^{-1}(HepG2)$ Liver cancer cell line IC50= 95µg mL $^{1}(A549)$ Adeno-A549 carcinomic $IC_{50} = 95 \mu g m L^{-1}$ human ¹(HT-29) alveolar HT-29 basal $\begin{array}{l} IC_{50} = 100 \mu g \\ mL^{1}(Rhabdomy \end{array}$ epithelial cells osarcoma) Human colorectal adenocarcin oma Rhabdomyo sarcoma cell lines Arothron Pufferfish Acetic acid Human lung A549 Cell Cell inhibition [43] stellatus extract carcinoma inhibition percentage at 10µl of skin, liver, muscle and intestine extract = 15%, 34%, 5% and 7% respectively Lanternfish Myctophum Chemical Human lung A549 Cell viability M. punctatum [42] $IC_{50} = 13.77$ punctatum extraction carcinoma inhibition 23.26µg/mL MCF7 (A549) Breast Mediterranean Meganyctiphan adenocarcin $IC_{50} = 25.34$ es norvegica. oma 29.62µg/mL (MCF-7) Hepatocyte HepG2 carcinoma M. norvegica

Aparna and Ampili; UPJOZ, 42(22): 57-67, 2021

67% with 300

µg/mL of HlH

IC₅₀ between 3.81 and $7.51 \mu g/mL$ for HepG2

10mg/ml of

reduction of

25 mg/ml of

84.81% of PC3

caused

total fish lipid

[44]

time-

dependent

Megatura

crab

krill

Freshwater

fish

Labeo rohita

Lipid

PC3

Prostate

cancer

Change

number.

apoptosis

induce

morphology, decrease cell

						total fish lipid caused reduction of 44.57% of PC3	
						50 mg/ml of total fish lipid caused reduction of 27.04% of PC3	
North African catfish	Clarias gariepinus	Pituitary adenylate cyclase- activating polypeptide (PACAP)	Human non- small cell lung cancer cell line	H460	Affects the proliferation of cancer cell	IC ₅₀ =13.17 μM	[45]
Asian swamp eels	Monopterus sp	Fractionated eel protein hydrolysate (EPH)	Breast cancer	MCF-7 cell	Cancer cell inhibition increases with decrease in molecular weight	IC ₅₀ value of EPH= 6.50 μ g/ml (For different fractions of EPH;10 kDa, 5 kDa and 3 kDa IC ₅₀ = 21.50μ g/ml 1,16.84 μ g/ml, 11.08 μ g/ml respectively)	[46]
Marine fishes (Sardines)	Sardinella longiceps Sardinella fìmbriata	Polyunsatura ted fatty acid extract	Breast cancer Prostate cancer	MCF-7 DU- 145	cytotoxic effects	S. longiceps $IC_{50}=81.17\mu g/m$ I (MCF-7) $IC_{50}=53.07\mu g/m$ I (DU-145) S. fimbriata $IC_{50}=180.01\mu g/m$ mI (MCF-7) $IC_{50}=67.64\mu g/m$ I (DU-145)	[47]
Mullet fish	Mugil cephalus	Crude epidermal mucus	Laryngeal cancer cell lines	-	anticancer activity	1000μg/ml with significant lytic activity. IC ₅₀ =7.8125μg/ ml	[48]

ACKNOWLEDGMENT

The authors wish to acknowledge all the researchers for their contribution in the field of importance of aquatic organisms in therapeutics and making the data available printed and online.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Cancer. Available:https://www.who.int/en/newsroom/fact-sheets/detail/cancer Accessed: September 2021.

2. Amin ARMR, Kucuk O, Khuri FR, Shin DM. Perspectives for cancer prevention with natural compounds. Journal of clinical oncology: Official Journal of the American Society of Clinical Oncology 2009;27(16):2712– 25.

DOI: 10.1200/JCO.2008.20.6235

- Calcabrini C, Catanzaro E, Bishayee A, et al. Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Marine Drugs. 2017;15(10):310. Doi: 10.3390/md15100310
- Lai P, Roy J. Antimicrobial and Chemopreventive Properties of Herbs and Spices. Current Medicinal Chemistry. 2004;11(11):1451–1460. DOI: 10.2174/0929867043365107
- Klausmeyer P, Chmurny GN, Mccloud TG, et al. A Novel Antimicrobial Indolizinium Alkaloid from Aniba panurensis. Journal of Natural Products. 2004;67(10):1732–1735.
- El-Seedi HR, Sata N, Torssell KBG, Nishiyama S. New labdene diterpenes from Eupatorium glutinosum. Journal of Natural Products. 2002;65(5):728–729. DOI: 10.1021/np010595r
- Faulkner DJ. Marine natural products. Natural Product Reports. 2001;18(1):1–49. DOI: 10.1039/b006897g
- Ireland CM, Molinski TF, Roll DM, et al. Natural Product Peptides from Marine Organisms. In: Bioorganic Mar. Chem. 1989;11–46.
- Saadaoui I, Rasheed R, Abdulrahman N, et al. Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Marine Drugs. 2020;18(4):197. DOI: 10.3390/md18040197
- Correia-da-Silva M, Sousa EE, Pinto MMM, Kijjoa A. Anticancer and cancer preventive compounds from edible marine organisms. Seminars in Cancer Biology. 2017;46(5):55– 64.

DOI: 10.1016/j.semcancer.2017.03.011

- Chakraborty C, Hsu C-H, Wen Z-H, Lin C-S. Anticancer Drugs Discovery and Development from Marine Organisms. Current Topics in Medicinal Chemistry. 2009;9(16):1536–1545. DOI: 10.2174/156802609789909803.
- Yang P, Cartwright C, Ding J, et al. Anticancer Activity of Fish Oils against Human Lung Cancer Is Associated with Changes in Formation of PGE2 and PGE3 and Alteration of Akt Phosphorylation. Mol Carcinog. 2014;53(7):566–577. DOI: 10.1016/j.physbeh.2017.03.040
- Carballeira NM. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Progress in Lipid Research. 2008; 47(1):50–61. DOI: 10.1016/j.plipres.2007.10.002

- 14. Malaker A, Adil S, Ahmad I, et al. Therapeutic potency of anticancer peptides. Journal of Engineering And Applied Sciences. 2013;2 (3):82–94.
- Newman DJ, Cragg GM. Marine-sourced anticancer and cancer pain control agents in clinical and late preclinical development. Marine Drugs. 2014;12(1):255–278. DOI: 10.3390/md12010255
- Newman DJ, Cragg GM. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. Journal of Natural Products. 2012;75(3):311–335. DOI: 10.1021/np200906s
- Nobili S, Lippi D, Witort E, et al. Natural compounds for cancer treatment and prevention. Pharmacological Research. 2009;59 (6):365–378. DOI: 10.1016/j.phrs.2009.01.017
- Aquatic Organisms: Microorganisms. Available:http://www.rampalberta.org/river/ecology/life/microorganisms.a spx

Accessed: September 2021.

- Suja M, Vasuki S, Sajitha N. Anticancer Activity of Compounds Isolated From Marine Endophytic Fungus Aspergillus Terreus. World Journal of Pharmacy and Pharmaceutical Sciences. 2014;3(6):661– 672.
- 20. Dhaneesha M, Sajeevan TP. Anticancer Activity of Sponge Associated Actinomycetes Streptomyces sp. MCCB267 On Lung Cancer Cell Line. Proceedings of 28th Kerala Science Congress. 2016;1628–39.
- 21. Pham HT, Nguyen NP, Phi TQ, et al. The Antibacterial and Anticancer Activity of Marine Actinomycete Strain HP411 Isolated in the Northern Coast of Vietnam. World Academy of Science, Engineering and Technology, International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering. 2014;8(12):780– 784.
- 22. Wijaya AP, Bondar KG, Frederick EH, et al. Identification of marine bacteria HPP.4A and HPP.T13 and its anticancer activity against P388 murine leukaemia cell. IOP Conference Series: Earth and Environmental Science. 2020;584 (1):0–6. DOI: 10.1088/1755-1315/584/1/012005
- Weisse T. Functional diversity of aquatic ciliates. European Journal of Protistology. 2017;61:331–358. DOI: 10.1016/j.ejop.2017.04.001
- 24. Calow J, Behrens AJ, Mader S, et al. Antibody production using a ciliate generates unusual

antibody glycoforms displaying enhanced cellkilling activity. mAbs. 2016;8(8):1498–1511. DOI: 10.1080/19420862.2016.1228504

- 25. Carpi S, Polini B, Poli G, et al. Anticancer activity of euplotin C, isolated from the marine ciliate euplotes crassus, against human melanoma cells. Mar Drugs; 2018. DOI: 10.3390/md16050166
- Beneficial Aquatic Plants. Available:https://www.aquaticbiologists.com/b eneficial-plants/ Accessed: September 2021.
- 27. Aquatic Organisms: Plants Regional Aquatics Monitoring Program (RAMP). http://www.rampalberta.org/river/ecology/life/plants.aspx Accessed: September 2021.
- Freshwater algae: Native plants; 2017. Available:https://www.doc.govt.nz/nature/nativ e-plants/freshwater-algae/ Accessed: September 2021.
- Awati SS, Singh SK, Wadkar KA. In vitro Antioxidant potential and Anticancer activity of Ceratophyllum demersum Linn. extracts on HT-29 human colon cancer cell line. Research Journal of Pharmacy and Technology. 2021;14 (1):28–36. DOI: 10.5958/0974-360X.2021.00006.8
- Lenora LM, Senthil Kumar J, Murugesan S, Senthilkumar N. Anticancer Activity of Water Hyacinth [Eichhornia Crassipes (Mart) Solms] on Human Cervical Cancer Cell Line. Octa Journal of Environmental Research. 2015; 3(4):327–331.
- 31. Saeed AM, Abotaleb SI, Alam NG, et al. *In vitro* assessment of antimicrobial, antioxidant and anticancer activities of some marine macroalgae. Egyptian Journal of Botany. 2020;60(1):81–96.

DOI: 10.21608/ejbo.2019.11363.1303

- Hemasudha T., Thiruchelvi R, Balashanmugam P. Antioxidant, antibacterial, and anticancer activity from marine red algae gracilaria edulis. Asian Journal of Pharmaceutical and Clinical Research. 2019;12(2):276–279. DOI: 10.22159/ajpcr.2019.v12i2.29883
- Miranda-Delgado A, Montoya MJ, Paz-Araos M, et al. Antioxidant and anti-cancer activities of brown and red seaweed extracts from chilean coasts. Latin American Journal of Aquatic Research. 2018;46(2):301–313. DOI: 10.3856/vol46-issue2-fulltext-6
- Lezcano V, Fernández C, Parodi ER, Morelli S. Antitumor and antioxidant activity of the freshwater macroalga Cladophora surera. Journal of Applied Phycology. 2018;30(5): 2913–2921.

DOI: 10.1007/s10811-018-1422-5

- Marudhupandi T, Ajith Kumar TT, Lakshmanasenthil S, et al. *In vitro* anticancer activity of fucoidan from Turbinaria conoides against A549 cell lines. International Journal of Biological Macromolecules. 2015;72:919–23. DOI: 10.1016/j.ijbiomac.2014.10.005
- 36. Aquatic Organisms: Invertebrates Regional Aquatics Monitoring Program (RAMP). Available:http://www.rampalberta.org/river/ecology/life/invertebrates.aspx Accessed: September 2021.
- 37. Ciftci HI, Can M, Ellakwa DE, et al. Anticancer activity of Turkish marine extracts: A purple sponge extract induces apoptosis with multitarget kinase inhibition activity. Investigational New Drugs. 2020;38(5):1326– 1333.

DOI: 10.1007/s10637-020-00911-8

 Eltamany E, Eltahawy N, Ibrahim A, et al. Anticancer Activities of Some Organisms from Red Sea, Egypt. Catrina: The International Journal of Environmental Sciences. 2014;9(1):1–6.

DOI: 10.12816/0010682

- Dolashki A, Dolashka P, Stenzl A, et al. Antitumour activity of Helix hemocyanin against bladder carcinoma permanent cell lines. Biotechnology and Biotechnological Equipment. 2019;33(1):20–32. DOI: 10.1080/13102818.2018.1507755
- Rethna Priya E, Ravichandran S. Anti cancer compounds of calappa calappa L. (1758). International Journal of Zoological Research. 2015;11(3):107–111. DOI: 10.3923/ijzr.2015.107.111.
- 41. The benefits of eating fish. Environmental Forum. 2007;24(5):7–8. Available:https://seafood.edf.org/benefitseating-fish Accessed: September 2021.
- 42. Lauritano C, Martínez KA, Battaglia P, et al. First evidence of anticancer and antimicrobial activity in Mediterranean mesopelagic species. Scientific Reports. 2020;10(1):1–8. DOI: 10.1038/s41598-020-61515-z
- Kanthimathi P, Joslin P. Antimicrobial, Anticancer Properties from Various Tissues Extracts of Puffer Fish Arothron Stellatus from Thoothukudi Coast. International Research Journal of Engineering Technology. 2021;8(3): 3001–3008.
- 44. Gupta P, Serajuddin M. Fish Lipid against Prostate Cancer (PC-3) through Apoptosis and Cell Cycle Arrest. Nutrition and Cancer. 2020;73(2):300–306. DOI: 10.1080/01635581.2020.1743872

45. Lugo JM, Tafalla C, Oliva A, et al. Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (*Clarias gariepinus*): Its potential use as novel therapeutic agent in fish and humans. Fish and Shellfish Immunology. 2019;86:559– 570.

DOI: 10.1016/j.fsi.2018.11.056

- 46. Halim NRA, Azlan A, Yusof HM, Sarbon NM. Antioxidant and anticancer activities of enzymatic eel (monopterus sp) protein hydrolysate as influenced by different molecular weight. Biocatalysis and Agricultural Biotechnology. 2018;16:10–16. DOI: 10.1016/j.bcab.2018.06.006
- Som RSC, Pillai P, Lekshmi S, Radhakrishnan CK. Anticancer effect of polyunsaturated fatty acid extracts from sardine fishes on human cancer cell lines. Indian Journal of Geo-Marine Sciences. 2017;46(2):290–294. DOI: 10.21276/ijpbs.2016.6.4.10
- 48. Balasubramanian S, Revathi A, Gunasekaran G, Studies on anticancer, haemolytic activity

and chemical composition of crude epidermal mucus of fish Mugil cephalus. Ijfas. 2016;4(5):438–443.

- 49. eNews: Fish and Your Cancer Risk: 4 Things You Need to Know; 2015. Available:https://www.aicr.org/news/fish-andcancer-risk-4-things-you-need-to-know/ Accessed: October 2021.
- Song J, Su H, Wang B et al. Fish Consumption and Lung Cancer Risk: Systematic Review and Meta-Analysis. Nutrition and Cancer. 2014;66(4):539–549. DOI: 10.1080/01635581.2014.894102

51. Nurdiani R. Anti-Carcinogenic Peptides Derived From Fish By-Products. Victoria

University; 2017. 52. Guo CH, Hsia S, Chung CH, et al. Combination of Fish Oil and Selenium Enhances Anticancer Efficacy and Targets Multiple Signaling Pathways in Anti-VEGF Agent Treated-TNBC Tumor-Bearing Mice. Mar Drugs; 2021. DOI: 10.3390/md19040193

© Copyright MB International Media and Publishing House. All rights reserved.