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ABSTRACT 

 
Fishes are exposed to various kind of toxicants that are life- threatening. Organophosphates are one of the major 

and hazardous contaminants found in water bodies. It reaches water bodies through surface runoff and leaching. 

Exposure to pesticides can cause impairment in the internal organs of organism, which may lead to the 

alternation in the physiology and functioning of the organs. Organophosphates can induce damages to nervous 

system by inactivating neurotransmitter acetylcholinesterase. It can also cause excessive release of reactive 

oxygen species and thereby cause oxidative stress. Oxidative stress activates antioxidant enzyme system of an 

organism, to cope up with the massive generation of free radicals. This review gives a brief account on the 

effects of organophosphates and the detrimental damages it can cause on organisms. 
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1. INTRODUCTION 
 

Since tropical climate favours pest breeding, 

pesticides play a very important role in agricultural 

development and public health care in India [1]. 

These pesticides along with other chemicals ca                     

n leach out and damage nearby aquatic ecosystem. 

Surface run off of these synthetic chemicals can cause 

pollution in rivers. Fishes are most likely to affect, as 

they can absorb them from water through gills, skin 

and food they intake [2]. Fishes from downstream 

may have severe effects due to pollution since it can 

be easily transported through water [3]. Fish exposed 

to a broad spectrum strobilurin fungicide                    

(Convoy) caused damages in erythrocytes and 

deoxyribonucleic acid (DNA) content lowering                   
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in vital organs. Erythrocyte cellular abnormalities, 

erythrocytic nuclear abnormalities and micronucleus 

assay values increased with increase in exposure to 

pesticides [4]. Effect of glyphosate, an herbicide, on 

Channa punctatus was studied and found that, it 

severely damages gill tissues, stomach and intestinal 

walls. It also interfered in enzyme activity of these 

tissues [5]. 

 

Organophosphates are used as stomach and contact 

poison, fumigants and systemic insecticides for 

different types of pests [6]. These are known to                 

act as anticholinesterase agents by inhibiting                       

the cholinesterase enzyme. 70% inhibition of 

acetylcholinesterase can result in death [7]. Inhibition 

from 20%-70% can cause adverse effects like 

problems in reproduction, reduced stamina and 

change in behaviour [8]. Chronic exposure can affect 

swimming and social interaction [9,10]. 

 

The phosphorus (P) of organophosphate pesticides is 

pentavalent and tetracoordinate with three single 

bonds attaching three constituents to the P while the 

fourth constituent attach with P by a double bond. 

P=O is highly electrophilic and reactive at P atom. 

That makes it a toxic chemical [11]. 
 

Once organophosphate enters an organism, it 

undergoes metabolic process that convert it into non-

toxic secondary conjugates. But it has an active P-O 

bond, which is really unstable and get easily 

destroyed, which can inhibit the activity of animal 

acetylcholinesterase. Some studies have shown               

that marine and freshwater organisms undergo                         

many metabolic changes when get exposed to 

organophosphates, that result in the interference in 

overall physiological processes [12-14]. Most of the 

genomic and biochemical molecules showed damages 

and decrease in content due to pesticide pollution 

[15]. 
 

Sunanda and his co-workers [16] concluded that 

presence of chlorpyrifos, an organophosphate, in 

water can cause variations in the chemical properties 

of water along with impairing the delicate balance in 

the environment. It can easily enter food chain and 

can cause physiological damages in the vital organs of 

the aquatic organisms. Even though, lethal and sub- 

lethal concentrations of chlorpyrifos is a threatening 

factor, long term exposure can induce abnormalities 

and can reduce the lifespan of various aquatic species.  
 

Mostly aquatic contaminants show primary effects on 

brain transcripts for neurotransmitter production [17]. 

Gruber and Munn [18] conducted a study on common 

carp fish from a lake where the water is affected by an 

irrigation return flow. These fish showed decreased 

cholinesterase activity by 34.2% when compared with 

the common carp from an unaffected lake by the 

irrigation system. Detailed study revealed that the 

affected lake had pollution by pesticides leached  

from the near agricultural region. Pesticides like 

chlorpyrifos, azinphosmethyl, carbaryl and ethoprop 

were identified from the water sample. This clearly 

represents the harmful effects of pesticides and also 

the vulnerability on non-target organisms.  

 

Fish showed decreased antipredator behaviours and 

preferred brighter areas of resting upon pesticide 

exposure. Low concentration exposure to pesticide 

can induce the reduction in ecological fitness of the 

fish [19]. During exposure period to organophosphate 

pesticides, Anguilla anguilla showed significant 

variations in metabolism. Blood glucose and lactate 

levels of the gill and liver increased. While the protein 

content of gills and liver decreased significantly 

during the exposure. Recovery phase after the 

exposure showed normalization of the above 

metabolic variations [20]. In Labeo rohita, pesticide 

exposure impaired the function of brain, gills, muscle, 

kidney, liver and blood cells of the fish [21].                 

Labeo rohita upon exposure to phenthoate, an 

organophosphate, showed decreased glycogen as well 

as protein content that eventually contributed to the 

mortality of the fish [22]. Oreochromis niloticus 

exposed to diazinon in sub-lethal concentration 

showed variation in behavioural pattern. Fish showed 

somersaulting, convulsion and erratic swimming as an 

after effect of pesticide exposure. Protein content in 

the plasma, muscle, liver, gills and kidney decreased 

with increase in dosage of pesticides [23]. These 

reviews represent the deleterious effects of 

organophosphate pesticides on fishes which also 

indicate the effects on aquatic organisms and other 

non-target organisms including humans.  

 

2. EFFECT ON ORGANS AND 

PHYSIOLOGICAL PARAMETERS 
 

Organophosphates can cause various damages to the 

physiology and functioning of internal organs in fish. 

It may degrade or induce structural aberrations in the 

organs, which result in the reduction or alternation of 

function of the organ. Exposure to quinalphos, an 

organophosphate, caused degeneration of epithelial 

lining of gills within 96 hours in Anabas testudinesis 

[24]. Oreochromis species exposed to quinalphos 

showed hypertrophy of gill tissues along with lifting 

of lamellar epithelium, degeneration of gill filament 

and lamellar epithelium and also vasodilation of 

lamellar axis [25]. Organophosphate, monocrotophos 

can cause thinning of microridges, upliftment of 

epithelial cells, development of hyperplasia, decrease 

in the density of mucous cells and dystrophy of 

epithelial tissues of gills in Cyprinus carpio [26]. 
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Fig. 1. Blood smear of fish treated with sub-lethal concentration of quinalphos showing erythrocytic 

cellular abnormalities reproduced from Sadiqul et al. [4] 

 

When Oreochromis mossambicus were exposed to 

sub-lethal concentrations of quinalphos, there was a 

decrease in hemoglobin content, increase in white 

blood cell (WBC) content, and decrease in red blood 

cell (RBC) count and reduction in plasma and tissue 

protein [27]. Silver barb showed significant decline in 

protein and lipid content along with increase in 

morphological and nuclear abnormalities of 

erythrocytes on exposure to quinalphos [28]. Sub- 

lethal exposure of quinalphos (Kinalux) on Nile 

tilapia showed variations in the histology of kidney 

and liver along with varied RBC and WBC count 

[29]. Muscle tissue showed significant reduction in 

protein content when compared with other tissues, 

after exposure to quinalphos [30]. Studies conducted 

by Bakry [31] and Brezenoff [32] suggests that 

organophosphate agents have serious effect on cardiac 

functions of the organisms. Hepatic hypertrophy, 

necrosis, ruptured vein and vacuolation were found in 

liver tissue, degenerated kidney tubules and 

hematopoietic tissue, along with degeneration of renal 

corpuscle, vacuolation and necrosis in the kidney 

tissues were identified in silver barb after chronic 

exposure to quinalphos [33]. Pesticides have no effect 

on reproductive system in fish, if given for short-term. 

But long-term subjection, even in sub-lethal 

concentrations can cause severe effects on 

reproductive organs and reproduction [34]. 

Quinalphos can induce release of cytochrome c from 

the mitochondria to cytoplasm and cleavage of 

caspase-3 and caspase-9 [35].  

 

Intermediate metabolites of quinalphos such as 

quinalphos oxon, O- Ethyl- O-.quinoxalin -2-yl 

phosphoric.acid, 2- hydroxyquinoxaline and 

ethyl.phosphoric acid were identified in rats                   

treated with quinalphos. These metabolites of 

quinalphos were persistent for longer period [36]. 

Quinalphos can decrease number of viable sperms. 

Abnormalities on sperm was also found in quinalphos 

induced mice. It decreased testicular cholesterol by 

impairing the biosynthesis of testicular tissues along 

with reduced steroidogenesis by down-regulating 

expression of cytochrome P450, 3β- HSD and 17β- 

HSD which resulted in lowering of testosterone level 

[37]. Clarias batrachus exposed to quinalphos 

pesticide                   showed decrease in steroidogenic 

enzyme activity in testis [38]. Silver barb showed 

vacuolation and necrosis of kidney tubules and liver 

cells when exposed to quinalphos at sub-lethal 

concentration [39]. Quinalphos exposure can impair 

aerobic oxidation of nutrients, and glycogen synthesis 

and breakdown in liver and can induce formation of 

micronuclei and chromosomal aberrations in bone 

marrow cells and germ cells [40]. Chlorpyrifos 

exposure of a zebrafish hatchlings caused slowing of 

swimming activity and impairment in spatial 

discrimination. The dangerous part is that, it prevails 

tills adulthood and the fish showed decreased 

response to stimuli. It simply indicates that exposure 

during early developmental stages can cause damages 

that lasts even in adult stages of life [41]. 

 

3. EFFECT ON ACETYLCHOLINEST- 

ERASE ENZYME 
 

Acetylcholinesterase (AchE) is a cholinergic enzyme 

found at the postsynaptic neuromuscular junctions. It 

hydrolyses the neurotransmitter acetylcholine in 

cholinergic synapses of the central and peripheral 

nervous system, both in vertebrates and invertebrates 

[42].  
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           AchE   

Acetylcholine choline acetic acid 

 

Fig. 2. Degradation of acetylcholine into acetic acid and choline by acetylcholinesterase 

 

AchE inhibition is a better biomarker for 

neurotoxicity in research work [43]. Studies 

conducted on organophosphate pesticides have 

revealed its influence on cholinesterases especially 

AchE. Organophosphates like chlorpyrifos, diazinon 

and parathion are proved to affect AchE in                      

larval zebrafish [44]. Giant freshwater prawns 

(Macrobrachium rosenbergii) also showed inhibition 

and accumulation of AchE at the synaptic terminals of 

nerves, on exposure with organophosphate quinalphos 

and dimethoate [45]. Fish exposed to chlorpyrifos 

showed increased expression of acetylcholine esterase 

enzyme by 12.4 times at 43µM concentration 

exposure when compared with the control group [42]. 

Diazinon, an organophosphate, was able to inhibit 

AchE activity by 77% within 24 hours. Within one 

hour of exposure, lipid peroxidation and carbonyl 

group formation increased dramatically. Meanwhile, 

antioxidant power significantly decreased [46]. 

Rainbow trout showed depression in cholinesterase 

activity after getting exposed to pesticide. Fish 

showed successful recovery after keeping them in 

uncontaminated water for 48 hours [47]. Exposure to 

quinalphos by common carp at sub-lethal 

concentration showed irregular, erratic and darting 

swimming movements, hyper excitability, loss of 

equilibrium and sinking to the bottom. This could be 

due to the inactivation of AchE enzymes in the nerve 

terminals [48]. Organophosphate pesticides have 

additive effect on inhibition of cholinesterase                 

activity when given in combination with other 

organophosphate pesticides [49]. Nerve agent like 

Sarin can also cause inactivation of AchE enzyme 

resulting in the accumulation of acetylcholine and 

continuous stimulation of cholinergic receptors [50]. 

AchE activity can be used as an assay in the study of 

pollution in marine species, since its activity is found 

in the highest level, especially in fish [51]. Goldfish 

exposed to azinphosmethyl, parathion and carbaryl 

pesticides showed inhibition of brain cholinesterase 

enzymes. During recovery from exposure, the fish 

was able to overcome the effect by 35 days or more 

[52]. 

 

Chlorpyrifos, a widely used organophosphate 

pesticide in agriculture, due to its efficiency to control 

pest has increased its exposure to human and other 

non- target organisms [53-55]. When early life stages 

of zebrafish get exposed to chlorpyrifos, they showed 

decrease in body length, restricted egg hatching and 

morphological aberrations. It also caused changes in 

response to light to dark photoperiod transition. AchE 

activity and many neurotoxicity genes were affected 

[56]. Some researchers use brain AchE activity to 

diagnose chlorpyrifos toxicity [57].  

 

Chlorpyrifos become an active compound when it 

undergoes oxidative desulfuration in target body to 

chlorpyrifos oxon which can induce neurotoxicity by 

inhibition of esterases in the nervous system [58-60]. 

This product is more water- soluble than chlorpyrifos 

and thus, it is easily eliminated from organisms like 

fish, rats and human, which indicate its low potential 

to get accumulated after multiple exposure [56,60-63]. 

But, chlorpyrifos oxon shows a particular selectivity 

for acetylcholinesterase as a target esterase [64,65]. 

Inhibition of AchE results in the accumulation of 

acetylcholine at the nerval synapses and causes 

hyperexcitation of neurons and related end organs 

[66-68]. Lipophilic nature of chlorpyrifos supports 

sustained inhibition of AchE and delayed toxicity 

after sub-lethal tolerated doses get stored and released 

slowly [65, 69-72]. 

 

Johnson [73] suggested that occurrence of delayed 

neurotoxicity is associated with the inhibition of an 

esterase. Bloch and Hottinger [74] proposed the 

involvement of AchE in neurotoxicity. This inhibition 

of esterase in the brain is only an early event of 

delayed neurotoxicity caused by organophosphate 

compounds. Delayed neurotoxicity was also identified 

by some researchers, in animals exposed to 

organophosphate after 8-14 days of dosing. It has a 

connection with the phosphorylation of a site in 

nervous system with in some hours of exposure               

[74]. Organophosphorus can inhibit AchE by 

phosphorylation of serine hydroxyl moiety at the 

active site of the enzyme. Phosphorylated enzyme is 

more stable that make the enzyme irreversibly 

inhibited [75]. If a compound capable of making 

complex with this site, were added before 

phosphorylation, neurotoxicity could be prevented 

[74].  

 

Acetylcholine is designated to bind at two cholinergic 

receptors- muscarinic and nicotinic receptors. 
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Accumulation of acetylcholine causes some variations 

in these receptors which in turn alters the function of 

autonomous nervous system, the somatic motor 

neuron and brain. These receptors are distributed in 

many organs and mostly in brain and spinal cord. 

Brain seems to have more muscarinic receptors while 

spinal cord has nicotinic receptors. Organophosphate 

pesticides have direct effect on muscarinic and 

nicotinic receptors. Binding of organophosphate on 

receptors can modulate the function of receptors 

[31,76-79]. Some organophosphates bind with the 

receptor in high affinity which make them important 

in modulating toxicity. It binds with muscarinic 

receptors. and can induce activation or inhibition of 

the receptor, that is, it can activate an inhibitory effect 

or can inhibit an activatory action. Thus, it can impair 

the entire system related with the receptors. In the 

case of nicotinic receptors, organophosphate bind at 

allosteric sites and cause desensitization [80]. It               

was also identified that organophosphate or their 

metabolites can interact with various other biological 

target molecules other than cholinesterase [81]. 

  

Muscarinic acetylcholine (m-Ach) receptors have 

regulation at the biochemical and electrophysiological 

actions. It deals with intracellular cAMP (cyclic 

Adenosine monophosphate), cGMP (cyclic guanosine 

monophosphate), inositol phospholipid levels and 

opening and closing of K
+
 and Ca

2+
channels [31,82]. 

Even though organophosphate have no direct effect 

on m-Ach receptors, but excess acetylcholine at the 

synaptic gaps can induce decreased synthesis or 

increased breakdown of these receptors. This is due to 

the inhibited AchE enzyme [83]. Most of these m-Ach 

receptors are regulated by agonists whose binding 

sites get altered upon acute exposure to 

organophosphate, that indirectly affect m-Ach 

receptors [84,85]. Many studies were conducted by 

interacting drug with nicotinic acetylcholine (n-Ach) 

and m-Ach receptors using radio-labelled ligand 

binding or receptor -induced responses like ion 

transport or generation of second messengers [86-92].  

 

Stimulation of muscarinic receptors.by toxins induce 

signs of toxicity with increased salivation and 

lacrimation, bronco secretion, bronco-constriction, 

constriction of eye pupil, brachycardia, 

gastrointestinal cramps, diarrhoea and urination while 

signs of toxicity induced by the stimulation in 

nicotinic receptors include tachycardia, muscle 

fasciculation, hypertension, muscle weakness and 

tremors. Restlessness, ataxia, emotional liability, loss 

of memory, mental confusion, convulsions, cyanosis, 

generalised weakness, coma and depression of 

respiratory centres are combined effect of nicotinic 

and muscarinic receptors. There are reported cases of 

deficits in memory and neurophysiological functions 

in humans exposed to organophosphate pesticides or 

nerve agents [93-96]. 

 

Psychology and mental state of an animal can be 

affected by the administration of cholinergic agonists 

and antagonists. Behaviours like aggression, learning 

and conditioning, emotional behaviour etc are 

depended on the cholinergic neurotransmission in 

limbic system. This limbic system includes parts of 

nervous system like thalamus, hypothalamus, reticular 

formation, cortex, hippocampus, basal ganglia etc 

[97,98]. Cholinergic agonists have effect on memory 

in humans as well [99], thus these are used in the 

treatment of Alzheimer's disease and for memory                  

loss due to old age [100,101]. Organisms may        

develop tolerance after many sub-lethal exposures to 

organophosphate compounds [102]. This tolerance is 

the result of decreased regulation of muscarinic and 

nicotinic receptors in the nervous system [103,104] 

due to the increased neurotransmitter level [105,106].  

 

4. EFFECT ON ANTIOXIDANT SYSTEM 
 

Exposure to pesticides can result in the induction of 

oxidative stress in many organisms, due to the 

increased generation of reactive oxygen species. 

Pesticides can have effects on antioxidative and 

detoxifying enzymes that neutralizes the oxidative 

stress, at very low concentration [107]. In humans, 

many lifestyle diseases such as diabetes, cancer, 

atherosclerosis, neurodegenerative disorders etc can 

be a result of oxidative stress. When the ability of 

antioxidant mechanism to remove free radicals get 

exceeded by the generation of reactive oxygen 

species, oxidative stress occurs. Oxidative stress                 

can activate certain environmental pollutants                

entered in the body, which may impair signalling 

pathways during metabolism [108]. Oxygen radicals 

can damage proteins in the system. For example, a 

study conducted suggests that hydroxyl radical is able 

to make protein degradation and modifications. When 

a protein subjects to hydroxyl radical, it results in the 

loss of tryptophan and produce bityrosine phenol. On 

the other hand, superoxide anion can act 

synergistically with hydroxyl radical in protein 

fragmentation [109]. Firstline defence antioxidants 

such as superoxide dismutase (SOD), catalase (CAT) 

and glutathione peroxidase (GPx) were found to be 

effective against superoxide anion radical, a free 

radical formed during metabolism. SOD catalyse 

dismutation of two molecules of superoxide anion to 

hydrogen peroxide and a molecular oxygen. Catalase 

on the other hand, convert hydrogen peroxide to water 

and molecular oxygen [110]. 
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Fig. 3. Mechanism of neutralizing free radicals by antioxidant enzymes 

 

Table 1. Commonly used Organophosphate pesticides and its application in agriculture 
 

Organophosphate pesticides Application in agriculture 

Parathion Applied to cotton, rice and fruit trees. 

Malathion Applied to crops especially vegetables, used in the eradication of mosquitoes 

Methyl parathion Applied to crops including cotton 

Monocrotophos Applied to crops especially against the pests of cucumber 

Chlorpyrifos Applied on crops with the most use include cotton, corn, almonds, and fruit 

trees, including oranges, bananas, and apples. 

Diazinon Applied to most crops 

Dichlorvos Applied to greenhouse and outdoor crops, effective against parasitic worms 

Dimethoate Applied on fruit crops specially to control fruit fly 

Phenthoate Applied on rice, vegetables, fruits and tea specially against chewing and 

sucking insects 

Quinalphos Applied to common crops 

 

Acute toxicity of organophosphate pesticides like 

diazinon can induce oxidative stress and are able to 

impair antioxidant defence system [46]. SOD, CAT 

and glutathione S-Transferase (GST) activity were 

increased in liver tissues of Cyprinus carpio after 

quinalphos exposure [111]. Malathion is also known 

for causing oxidative damage in fish along with 

variation in AchE, hematological profiles, antioxidant 

enzymes status and lipid peroxidation rate [112,113]. 

Quinalphos induces generation of free radicals                 

that causes lipid peroxidation [114]. It decreased 

antioxidant enzymes [115]. Antioxidant enzyme such 

as SOD, catalase and glutathione reductase showed 

decline in production of mitochondrial, microsomal 

and nuclear fractions of gills, after subjecting to sub-

lethal dosage of quinalphos [116]. Quinalphos is able 

to reduce cell viability by increasing the generation      

of intracellular reactive oxygen species, DNA 

condensation and cell apoptosis [35]. There were 

significant variations in the antioxidant enzyme, 

glutathione system and lipid peroxidation rate on sub-

lethal exposure to quinalphos [117]. Methyl parathion 

can also induce severe damages in fish by increasing 

the production of ROS [118]. A study conducted in 

Oreochromis niloticus showed that organophosphate, 

dimethoate, has various effect on different antioxidant 

enzymes present in different tissues of the fish.              

For example, enzymes like SOD, GPx and lipid 

peroxidation (LPO) activity showed increased activity 

while CAT, GSH and glutathione reductase (GR) 

activity showed decrease in liver tissues. On the other 

hand, GR and LPO have increased activity in kidney 

and GPx and GSH decreased significantly [119]. 

 

While examining the relation between the oxidation 

stress and gene expression of antioxidant enzyme, 

Limaya and his co-researchers [120] identified certain 

features regarding enzyme activity. When rats were 

induced with oxidative stress, RT-PCR results showed 

increase in mRNA generation of antioxidant enzymes 

like SOD, GPx and CAT but the enzyme activity was 

decreased. This suggests that there could be some 

post- translation modifications that lead to the inactive 

enzymes. Gene expression of paraoxonase (PON) and 

GPx was found to be decreased while CAT                    

genes showed increase in expression by 1.1-fold after 

https://en.wikipedia.org/wiki/Cotton
https://en.wikipedia.org/wiki/Rice
https://en.wikipedia.org/wiki/Fruit
https://en.wikipedia.org/wiki/Maize
https://en.wikipedia.org/wiki/Almond
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4 hours of exposure to organophosphates [120]. 

Expression of GST gene and vitellogenin (Vtg) gene, 

which are oxidative stress indicators, were found 

decreased along with significant DNA damage in the 

liver cells was observed when fish were exposed to 

pesticide residues [121]. 

 

5. ADVANCES IN TECHNOLOGY TO 

CONTROL THE USAGE OF 

PESTICIDES 
 

To control the excessive usage of pesticides                           

in agriculture, advanced technologies such as 

nanotechnology have contributed by the introduction 

nanobiosensors and nanoformulation of 

agrochemicals. Nanobiosensors, to detect the presence 

the organophosphate agents were developed, to 

measure its presence in food particles. The sensors are 

mostly based on acetylcholinesterase, since it is                 

the primary target of organophosphates [122]. 

Development of nanoformulations of agrochemicals 

as an alternative for pesticides and fertilizers are      

being considered due to hazardous effects of these 

chemicals on non-target organisms [123]. 

 

6. CONCLUSION 
 

Uncontrolled usage of pesticides in the agricultural 

field was always been a concern in terms of effects on 

the non- target organisms. Aquatic organisms are 

mostly affected by pesticides since it can simply get 

into aquatic ecosystem by surface runoff and leaching. 

According to the above reviews, application of 

pesticides such as organophosphates can cause serious 

nervous complications and organ damages to the pests 

and the non-target organisms as well. It can easily 

enter food chain and can cause physiological damages 

in these organisms. Organophosphates are known for 

its effect on AchE, the enzyme that get inactivated by 

means of phosphorylation of the serine moiety.                 

This inactivation can cause accumulation of 

acetylcholine on the nerve terminals leading to                   

the continuous activation of nerve. It can lead to 

various complications like neurodegeneration, 

delayed neurotoxicity, brachycardia, losing control 

over muscles, respiratory arrest and even death. 

Organophosphates can also induce oxidative stress by 

increasing the generation of reactive oxygen species. 

ROS takes electrons from the lipids in the cell 

membrane and can cause cell damage. This process 

known as lipid peroxidation. The destruction of 

membrane lipids and the end-products of such lipid 

peroxidation are dangerous for the viability of                 

cells, even tissues. ROS can interfere with various 

signalling pathways and result in impairment of many 

physiological functions. Various detailed studies are 

being done in order to find the basis of these causes. 
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