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ABSTRACT 
 

Biotechnology is based on the understanding of DNA and thus helps in the manipulation of genes through 

genetic engineering with molecular markers and tissue culture. Recently, Biotechnology not only provides new 

varieties of crops (agriculture biotechnology) but has also played an important role in insect pest management 

with Integrated Pest Management (IPM). IPM is an environment-friendly approach that focuses on keeping the 

pest population at below economic threshold levels by employing all available alternate pest control methods 

and techniques such as cultural, mechanical, and biological(habitat manipulation) with emphasis on the use of 

bio-pesticides and pesticides from the plant (By Ministry of Agriculture and farmers welfare, India). 

Biotechnological techniques integrated with entomology include -DNA barcoding play important role in 

molecular taxonomy through recombinant DNA technology, RNAi gene regulatory process, Insect-resistant 

crop varieties, sterile insect technique, and biopesticides formulation which dynamically control the insect pest 

population. 
 

Keywords: DNA barcoding; RNAi; SIT; Biopesticides. 
 

1. INTRODUCTION 
 

Recently biotechnology has provided additional tools 

to restraint the damages caused by insect pests 

integrated with solutions against the hazardous effect 

of traditional and chemical methods of insect pest 

control [1][2]. The benefits of biotechnology are 

especially meaningful at a time when our global 
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population is growing and our demand for food is 

increasing these insect pests are the biggest challenge 

for our generation. Last year in 2020, India has faced 

one of the worst locust attacks in decades which 

caused large-scale destruction and threatened the food 

security of the country. So, the foremost step to 

control these insect pests is – timely identification. 

DNA barcoding provides a new method for the 

identification of species that is swifter and more 

accurate than traditional methods. Through this 

technique, insect pest species can be identified at any 

stage of life and also the biotypes which certainly not 

possible through traditional morphology identification 

methods [3]. Genetically RNA interference (RNAi) is 

a natural mechanism in which RNA molecules 

through translation or transcriptional repression are 

involved in sequence-specific gene silencing 

(suppression). RNAi can play a most important role in 

sustainable agricultural projects and integrated pest 

management that are required globally. By the 

biotechnological techniques, the genetically modified 

organism has been produced whose genome altered at 

molecular level thus help in controlling the vector-

borne diseases in plants and animals.  
 

2. DNA BARCODING 
 

Agriculture plays a vital role in the boosting up of the 

economy of any country. But Pest management in 

agriculture is the biggest problem in the present 

scenario. Insects can become pests on the farm when 

they cause damage to the crop. Insects having 

chewing and piercing-sucking mouthparts cause a lot 

of damage to the crop. Most of the insect pest 

includes aphids, locusts, scales, spider mites, and 

whiteflies. These cause two types of damage one- by 

direct mode in which the plant is directly injured and 

the other by indirect mode in which these transmit 

viral pathogens[4][5]. To effectively control a pest, 

its accurate identification is the most challenging 

task because of its complex life cycles and cryptic 

species [6]. In general, a barcode is a set of lines of 

different widths and sizes representing data, that when 

read help identify the scanned object similar to this in 

the genome of living organism analogous to barcodes 

used for their identification. DNA barcoding can be 

an important technique for molecular identification of 

species in their distinct life stages, types [7], host-

associated genetic variation [8], and the distinction 

between cryptic species [9]. In this technique, 

standardized DNA sequences are used as markers for 

the recognition of species [10] and a taxonomically 

unknown specimen compared with a reference library 

of barcodes of known species origin to establish a 

species-level identification [11].   

For identification of the animal species, the 

mitochondrial gene cytochrome c oxidase subunit 1 

(cox1 or COI; 648bp) of a short fragment of DNA 

sequence act as a standardized single universal 

molecular marker [12][13]. The mitochondrial 

genome of animals is a more reliable   objective for 

analysis than the nuclear genome because of its 

unique features- 

 

a) The mitochondrial genome lack introns,  

limited exposure to recombination because 

mitochondria are maternally inherited                        

and have the haploid mode of inheritance              

[14]. 

b) In most animal phyla, the universal primers for 

the mitochondrial genes are very vigorous and 

enable recovery of its 5’ end [15] [16]. The 

mitochondrial protein-coding gene contains 

more differences than the ribosomal gene. 

Therefore they are more likely to distinguish 

among closely related species. 

c) Cytochrome c oxidase gene has a high 

dimension of phylogenetic signal than any 

other gene in mitochondrial genome[12] and 

has a high mutation rate as compared to the 

nuclear genome, which results in a high ratio of 

intra-specific divergence, significant in 

evolutionary studies[17][18]. 

 

Procedure for the DNA barcoding (Fig-1): DNA 

barcoding has four main steps-DNA. 

 

(I)DNA Extraction: First of all collect the 

sample/tissue from the unidentified specimen (take a 

small amount and rest of specimen preserved). The 

DNA extraction involved- lysis of cell and nucleus, 

precipitation- separates the freed DNA from cellular 

debris and purification of DNA. This is done by using 

various DNA extraction methods – Phenol- 

chloroform method, Proteinase K enzyme, Silica 

column-based extraction method, and DNA extraction 

by magnetic beads. 

(II) PCR amplification: Universal primers like 

LCO1490 [15], LepF1, and LepR1 [19] are used to 

amplify a known region of the cytochrome oxidase I 

(COI) gene. 

(III) DNA Sequencing: It is a process of determining 

nucleotides sequence in DNA by using the Sanger 

Sequencing method. 

(IV) Analysis: Various programs can be used to 

analyze the DNA sequence- Barcode of Life Data 

Systems (BOLD) and National Centre for 

Biotechnology Information (NCBI) Basic Local 

Alignment Search Tool (BLAST).   
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Fig. 1. Main steps of DNA barcoding – unidentified insect pest collected and DNA extracted, selected 

appropriate marker, amplify the DNA sequence with PCR amplification, DNA sequencing (nucleotide-

 influenced the amino acid sequences of proteins), and finally analyzed the data 

 

The Barcode of Life Data Systems (BOLD) is an 

online - data storage and analysis program for DNA 

barcode records [20]. It consists of four main 

components, a data portal, an educational portal, a 

registry of Barcode Index Numbers (BINs) (putative 

species), and a data collection and analysis 

workbench. 

 

3. RNAi EFFICACY 
 

In recent few years, Genetically modified crops have 

been very successful in controlling insect pests and 

have also reduced the use of chemical 

pesticides[1][21] but the insect pests have evolved 

field resistance against insecticidal toxin by the swift 

evolutionary process [22], so not so successful to 

completely control the insect pest. Although,RNA 

interference (RNAi) provides a great assurance for 

effective control of agricultural insect pests [23] 

through sequence-specific gene silencing mechanism. 

RNA interference (RNAi) is activated by double-

stranded RNA (dsRNA) and is likely to be the novel 

approach for the next generation of insect pest-

resistant transgenic plants [24]. RNAi pathway is 

found naturally in many animals; performs the 

function in defense mechanism against pathogens like 

viruses and transposable elements. dsRNA is 

processed into short RNA duplexes which perform the 

following activities- used to guide the recognition of 

their target, cleave a complementary mRNA,  repress 

their protein synthesis at a posttranscriptional 

silencing level, and alter their chromatin structure at 

the transcriptional level[25]. 

 

RNAi Pathways- There are three RNAi pathways in 

insects [26][27]: 

 

i) siRNA(small interfering RNAs- 20–25 

nucleotides) mediated pathway.  

ii) miRNA(micro RNAs- 21–24 nucleotides) 

mediated pathway.  

iii) piRNA (Piwi-interacting RNAs- 24–30 

nucleotides) mediated pathway.  

 

Mechanism: At the cellular level, these RNAi 

pathways are interconnected and protect the organism 

from pathogens by gene regulation [28] [29]. In the 

RNAi pathway, siRNAs are found to be excised from 

long, fully complementary double-stranded RNAs 

(dsRNAs) [30], and these dsRNAs can derive directly 
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from RNA virus replication (exogenous in origin) 

naturally. The biogenesis of siRNA requires the 

RNase-III Dicer enzyme [31] also known as 

endoribonuclease dicer. miRNAs are generated from 

endogenous transcripts that form stem-loop structures 

that guide RNA silencing. Inside the cell, in the 

nucleus, the biogenesis of miRNAs requires- RNase-

III-family enzyme Drosha that recognized these 

hairpin structures and cleaved them into precursor 

pre-miRNAs then pre-miRNAs are transported to the 

cytoplasm by Exportin-5[32][33][34]. In the 

cytoplasm, the pre-miRNA is further processed by the 

RNase III endonuclease Dicer into a mature miRNA 

duplex [35]. Finally, RNA-mediated gene silencing 

complexes are formed by both siRNA and 

miRNA[36]. Finally, miRNA duplex is loaded into 

the Argonaute (AGO) family of proteins to form a 

miRNA-induced silencing complex (miRISC) or 

miRNA containing effector complex of                  

RiboNucleo Protein particles(RNP)[37][38] and 

siRNA also form RISC (RNA Induced Silencing 

Complex) or RITS (RNA-Induced Transcriptional 

Silencing) complexes. Argonaute proteins are the 

highly specialized components for silencing 

complexes (RISC, RITS,RNP)[39] and perform a 

function- guide RNA to associate with target                  

RNAs and slicing of these targets, blocking the 

translation in miRNP and with rasiRNA (repeat-

associated short interfering RNA) - a specialized 

nuclear Argonaute-containing complex-  guides the 

condensation of heterochromatin by the RITS 

complex[40]. 

piRNAs (PIWI-interacting RNAs) are found in 

clusters form in the genome and protect germ cells 

from transposable elements expressed in invertebrates 

and vertebrates e.g. in the genome of Drosophila 

melanogaster have three Piwi proteins - Piwi, Aub  

(Aubergine), and Ago3 (Argonaute). The biogenesis 

of piRNAs is initiated from long single-stranded 

precursor transcripts and this mechanism requires 

endoribonucleases- zucchini (ping-pong mechanism) 

[41] instead of Dicer. After the recognition of mRNA 

of a transposable element, piRNAs are formed in the 

cytoplasm through the slicer activity which is done by 

endonuclease- Piwi proteins, Aub, Ago3 and cleaved 

by Zucchini and trimmed by the exonuclease Nibbler 

[42]. Finally, piRNAs silencing is processed by 

promoting-methylation of DNA and 

heterochromatinization [43]. 

 

Insects can acquire dsRNA from the outer 

environment thus spreading it to different cells of the 

body [23]. The uptake of dsRNA in insects is 

explained by two types of mechanisms- 

transmembrane channel-mediated uptake mechanism 

based on transmembrane proteins [44] and an 

endocytosis-mediated uptake mechanism based on 

receptor-mediated endocytosis [45]. The                    

strategy of RNAi in insect pests control – 

Identification of target gene, designing of dsRna 

molecule, Protein stability, and phenotypic analysis, 

delivery of dsRNA and effect on insect pests as 

shown in Fig.2-  

 

 
 

Fig.2. RNAi strategy in insect pests management 
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3.1Use of RNAi in genetically modified (GM) plant against insect-pest 
 

The most successfully commercialized genetically modified (GM) crops for insect-pest management have are 

based on Bacillus thuringiensis (Bt) toxins [46], this toxin kills the insect pest by attacking on the gut epithelium 

[86]. For plant-mediated RNAi pathway- dsRNA derived from hairpin RNA (hpRNA) which engineered in 

plant crop to target the genes in insect pests[47][23]. There are some examples of some insect pests- 

  

Common name (with 

order)  

Scientific name Target Gene Effect on insect pest Reference 

Western corn rootworm 

(Coleoptera) 

Diabrotica virgifera 

virgifera 

vATPaseA   larval stunting and 

mortality 

[48] 

Cotton bollworm 

(Lepidoptera) 

Helicoverpa 

armigera 

CYP6AE14 Larval growth 

retardation 

[47] 

Colorado potato beetle 

(Coleoptera) 

Leptinotarsa 

decemlineata 

LdJHAMT Reduced pupation rate [49] 

Cotton bollworm 

(Lepidoptera) 

Helicoverpa 

armigera 

HaHR3  larval mortality [50] 

Green peach aphid 

(Hemiptera) 

Myzus persicae MpC001, Rack1 Progeny reduced [51] 

 

There are several challenges in the application of 

RNAi-based technology used for insect pest control- 

off-target and non-target effects of dsRNA, the 

evolution of RNAi resistant insects, and efficient 

dsRNA delivery, antibiotic-resistant marker genes, 

and most important point highly efficient dsRNA with 

a low-cost price. Nanoparticles are emerging as a new 

tool for dsRNA delivery for insect pest management. 

 

4. STERILE INSECT TECHNIQUE (SIT) 
 

In this technique, large numbers of sterile individuals 

are released in the wild population which compete for 

mating and causes blocking of population growth 

mechanisms for inducing sterility including [52]-. 

 

(I)Irradiation – Mostly used for sterilization the 

insect exposed through X-rays and γ rays affect 

germline-cells. It causes chromosomal disintegration 

and the death of progeny in the early stages of 

development. 

(II)Chemosterilization- chemical compounds are 

used to control insect pests mainly vectors of diseases 

by causing temporary or permanent sterility. This 

chemical includes- Aziridine-phosphoryl, Non-

alkylating Dimethylamines, Non-aziridine Alkylating 

Agents, and Juvenile Hormone Analogs[53]. 

(III)Transgenic technology (Genetically modified 

insect) - In this technology - insertion of non- 

transposons elements are inserted into the genome 

(especially to produce males) through transgenic 

technology. This process reduces the reproductive 

capacity of the population because transgenic males 

when mate with the wild female population leads to 

embryonic lethality [54]. This Technique is helpful in 

controlling Anopheles populations. As referred by 

Harvey [55] Male selecting gene OX4319L 

(transgene) engineered in Plutella xylostella( crucifers 

pest) into wild-type populations led to rapid pest 

population decline, and then cause elimination. 

RIDL (Release of Insects carrying a Dominant Lethal) 

is as similar to SIT in this technique sterile insects are 

engineered with having lethal gene in their genome so 

when released in wild population these insects cause 

decline population decline – progeny died before 

maturity.  

 

5. BIOPESTICIDES AND BIOTECHNO 

        LOGY 
 

In the last few years many chemical pesticides have 

been banned in India, because of their hazardous 

effect on the environment(highly toxic to honeybees) 

as well as causing severe health issues [91] such as 

carcinogenic and neurotoxic [56]. So, Biopesticides 

are the best alternative to chemical pesticides because 

of their eco-friendly approach and fewer side effects 

on humans. These are categorized (Fig.3) as microbial 

biopesticides derived from viruses, bacteria, fungi, 

nematodes, botanical bio pesticides derived from 

plant secondary metabolites [57], and biochemical 

pesticides derived from pheromones. For making 

these biopesticides highly specific and highly targeted 

biotechnology play a very significant role by 

manipulating desirable trait.  
 

Microbial biopesticides: Bacillus thuringiensis (Bt), 

a soil-inhabiting bacterium produces Cry-toxin (Bt 

toxin) protein which is fatal to many insect orders 

including Lepidoptera, Diptera, and Coleoptera that 

causes major damage to crops. Cry-toxin mainly 

attacks the digestive system of insects when it comes 

in contact with proteases in the midgut resulting in its 

activation and causing rupturing of the midgut thus 
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ultimately leading to the death of insects [58]. 

Entomopathogenic fungi include Beauveria bassiana, 

Metarhizium anisopliae, Lecanicillium lecanii, 

Nomuraea rileyi, and Hirsutella thompsonii which are 

used widely to control insect pests [59] and with the 

biotechnological techniques, new strains have been 

developed on the commercial scale to get more 

accurate results. Their mode of infection possess 

when fungal conidia come in contact with insect 

pests, these fungal conidia develop hyphae which 

penetrate the insect’s cuticle through enzymatic action 

and entered into the body of the insect pest. Inside the 

body, the fungal hyphae vegetatively propagate and 

thus lead to the death of the insect [60]. Baculoviruses 

are a large group of viruses that infect a broad range 

of insect pests mainly belonging to 

orders Diptera, Hymenoptera, and Lepidoptera. With 

the biotechnological techniques (Recombinant DNA 

technology) the efficiency of isolated baculoviruses 

can be increased by inserting foreign genes [61] 

mainly insect’s toxin gene. There are two categories 

of baculoviruses- nucleopolyhedroviruses (NPVs) and 

granuloviruses (GVs) [57].  These may affect larval 

stages as well as adult stages when these are ingested 

by larvae; in the midgut leads to the breakdown of the 

protein and the release of the virions which destroys 

internal tissue [58] and ultimately causes death and in 

adults, these may paralyze the insect [62]. 

Entomopathogenic nematodes (EPNs) are the soil-

inhabiting nematodes that have the tendency to kill 

the insects having soil-dwelling stages like larval and 

pupal stages, with the help of symbiotic bacteria [63]. 

There are two main genera- Steinernema and 

Heterorhabditis form where the EPNs are produced. 

For the action of EPNs- infective juveniles of the 

nematode play a major role, these invade the host 

through the oral, anal, spiracles openings [57] and 

finally release the symbiotic bacteria into the intestine 

that ultimately causes the death of the insect. In India, 

plant products have been used to control household 

insects from the ancient time but now in the last few 

years, these products are used as pesticides on large 

scale not only in India but also on the global platform. 

Nicotiana tabacum, Azadirachta indica, and 

Chrysanthemum cinerariifolium [64] are the main 

plants from which botanical biopesticides are derived. 

Biochemical pesticides include- Semiochemicals- 

pheromones, growth hormones [65], and                   

enzymes. Pheromones are the chemical used by 

insects to attract mates (sex attractants), used              

against predators (release of volatile substances), and 

also to found food. Pheromones are highly                 

species-specific and highly effective to                       

control the insect pest population by attracting the 

insects, trapping, and finally leading to death                 

[66]. 

 

In the formulation of biopesticides, the major 

challenge is the shelf life [67], storage, and efficacy 

consistency. Biopesticides consist primarily of living 

microbes so these are affected by physical 

environmental factors like temperature fluctuations, 

humidity, and exposure to ultraviolet radiations that 

reduce their efficacy.  

 

 
 

Fig. 3. Biopesticides from the different living sources are used to control the insects in natural ways 
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6. DISCUSSION 
 

DNA barcoding makes the identification of insect 

pests more reliable and accurate by discriminating the 

intraspecific and interspecific diversity of species. 

Recently, millions of records of DNA barcode data 

are available in the BOLD system for identification 

[68]. RNA interference is an effective tool in insect 

genomic projects in entomology, also can protect the 

crops from insect pests, and can become next-

generation biopesticide[69][71][72]. For the perfect 

result of RNAi technology in insect pest management- 

the target gene should be selected precisely [23] [70]. 

RNAi mediated technology can be applied on most of 

the insect pests that cause maximum damage[73] 

belongs from order coleoptera, Lepidoptera, and 

hemiptera including- red flour beetle (Tribolium 

castaneum)[74], western corn rootworm(Diabrotica 

virgifera)[75][76], light brown apple moth( Epiphyas 

postvittana)[77], cotton bollworm (Helicoverpa 

armigera)[47], European corn borer(Ostrinia 

nubilalis) [78] sugarcane borer, (Diatraea 

saccharalis) [79], whitefly (Bemisia tabaci)[80]and 

Rice weevil  (Sitophilus oryzae)[81]. SIT depends on 

mass rearing, which causes ripple effects on insect 

pest population [82]. SIT integrated with various 

methods helps to eradicate the different types of insect 

pests mainly a pest of order Lepidoptera [83] [84] 

[85]. Nosemosis is a widespread disease of adult 

honeybees that can be treated with RNAi-based 

strategy by specific gene silencing [87] [88] thus also 

helping in the beneficial insect's diseases[89][90]. In 

biopesticides, different types of enzymes (chitinases, 

cellulases, and proteases) are used which eliminate the 

insect pests and do not cause damage to crops [92]. 

The biopesticides market growing in a very swift way 

and in the coming future, these will equalize synthetic 

pesticides [93] [94].   

 

7. CONCLUSION 
 

Biotechnology integrated with entomology has huge 

potential to protect the crops from insect pests and 

with agriculture, the production of crops also 

increased with transgenic crop varieties. India has 

diversified geographical regions which support many 

different types of insects due to this reason, in recent 

few years many invasive insect species attacked India 

which cause a lot of damage to crops and horticultural 

crops but their timely identification through DNA 

barcoding make it possible to get rid of this type of 

attack. RNAi transgenic crops provide a new 

approach to controlling insects and also provide 

protection to the beneficial insects. New varieties of 

silkworm and honeybee are possible through genetic 

engineering which increases the prosperity of farmers.  

 

For the more successful application of biotechnology 

– new genes should be identified which have multiple 

functions and more work should be done to make 

nanoparticles more effective in insect pest 

management which causes zero damage to the 

environment.   
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