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ABSTRACT 
 

The mosquito vectors of various human diseases host a diversified microbial community. These 
microbiomes seem to be beneficial in several aspects of mosquito biology. They can influence 
mosquitoes’ susceptibility to various pathogenic infections, therefore affecting the vectorial capacity 
of mosquitoes through different direct or indirect mechanisms. These microbes act as natural 
barriers against several mosquito-transmitted infectious diseases. They may be considered as a 
new transmission-blocking strategy to limit the transmission of pathogens like Plasmodium, 
Trypanosome, Zika, Dengue and Chikungunya viruses, and filarial parasites. It is through an 
understanding of the interaction between the mosquito, its microbiota, and the transmitted 
pathogens that some promising approaches may be developed for limiting the transmission of 
pathogenic diseases.In this review, we investigate the role of mosquito’s gut microbiome in the 
propagation of pathogenic infections. It is summarized here in a brief manner how the current 
knowledge is used for the purpose of limiting the transmission of mosquito-borne diseases through 
the alteration of mosquitoes' vector capacities. 
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1. INTRODUCTION 
 

Malaria, filarial disease, dengue fever, 
chikungunya, and zika are mosquito-transmitted 
diseases that pose a major health threat 
worldwide. Mosquitoes in endemic areas of these 
diseases are continuously facing these 
pathogens. In their habitat,they remain exposed 
todiversified microorganisms. Some of these 
microorganisms have prospered symbiotic 
relationships with these insects. Some are intake 
from their nectar sources or breeding places and 
are adapted to persist within the host 
commensally. Several lines of evidence suggest 
that these symbiotic bacteria nutritionally benefit 
the insect [1,2]. Many studies have documented 
the mosquito microbiota's significant role in 
maintaining the host's basal immune activity 
[1,3,4,5]. A mosquito's immune response can be 
modulated by its microbiota, affecting its ability to 
transmit human pathogens. For example, the 
antibiotic treatment promotes A. gambiae and A. 
aegypti to become more susceptible to 
Plasmodium falciparum and infection with the 
dengue virus, respectively [1,6,7]. These 
endobacteria can influence mosquito’s vector 
competence by impairing pathogen infections 
through three mechanisms. They compete for 
resources, secret anti-pathogen molecules and 
ultimately activate mosquito’s responses of the 
immune system [1,8,9].  
 

Insect vectors, human hosts, and pathogens 
interact to determine the fate of infectious 
diseases transmitted by vectors. The majority of 
research targeting control of the spread of 
diseases transmitted by mosquitoes has been 
run so far largely focused on the human-
pathogen or human-vector interactions [1]. A 
major area of research today focuses on the 
interaction of insect vectors with pathogens to 
determine the impact of this tripartite interaction, 
pathogens and insect microbiota in controlling 
the fate of disease transmission. This review 
aims to introduce and review the latest 
knowledge about mosquito microbiota, as well as 
the current understanding of how microbiota may 
modulate infections transmitted by mosquitoes. 
This approach may become a new promising 
alternative strategy for controlling infectious 
diseases. 
 
Mosquitoes' gut, genital organs and salivary 
glands are colonized primarily by bacteria, 
viruses, and fungi. The bacterial part of this 
microbial community is best characterized 

[10,11,12,13]. This microbiota interferes with 
disease transmission by inhibiting pathogen 
colonization and development and affecting a 
wide range of physiological aspects of mosquito 
physiology. Thus, micro-organisms colonizing 
mosquitoes are a potential target in 
eliminatingthe mosquito-transmitted pathogenic 
infection. Destruction of these microorganisms 
results in the shortened lifespan of the mosquito 
or also causes decreased rates of pathogen 
infection, either via natural competition 
mechanisms [10,14,7] or through the production 
of anti-pathogenic factors [10,15,16,17]. This 
strategy's main advantage is that it 
simultaneously targets mosquitoes and 
pathogens. The mosquitoes acquire their 
microbiomes partly from mother’s genitalia at the 
time of embryonic development and partly from 
their breeding places. Some are trans-steadily 
shifted to the adults. Adults acquire some other 
micro-organisms during feeding or mating 
[10,18,19,20]. The ingested blood is stored in the 
mid-gut over 2 days during digestion. The gut 
microbiota shows drastic proliferation after a 
blood meal. During its early development, 
Plasmodium undergoes several stages in the 
middle of the gut [10]. The current review 
elaborates on comprehending the tripartite 
interactions between mosquitoes, their 
microbiomes, and transmitted pathogens. It also 
discusses how microbes and some 
environmental inputs maintain these groups' 
composition andt their diversity.  
 

2. INTERACTION BETWEEN MOSQUITO 
AND INVADING PATHOGENS 

 

Mosquitoes mainly rely on innate immune 
systems to escape from invading pathogens. 
Like vertebrates, different immune signaling 
pathways also shape and control their immune 
responses. Unlike higher organisms, physical 
barriers, such as hard exoskeletons and adaptive 
immune systems, are established by mosquitoes 
to protect themselves. Viral, bacterial, fungal, 
and parasitic infections are handled completely 
by mosquitoes' innate immunity. A mosquito's 
body responds to pathogens by forming 
physiological barriers. Various responses occur 
to clear pathogens from the system depending 
on the location and degree of infection. In order 
to successfully introduce infection, a pathogen 
must dismantle both the physiological and 
physical barriers. Their tightly closed, 
hydrophobic outer cuticles protect them against 
external environmental factors and pathogen 
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access. In the event that pathogens penetrate 
the mosquito through an adventitious break in 
the outer cuticle, coagulation, scar formation and 
hemocyte degranulation are triggered, preventing 
pathogen entry. There are two components to 
insect immunity: a cellular component as well as 
a humoral component, which allows mosquitoes 
defeat any pathogens that have penetrated the 
body once they have been ingested. In the 
cellular arm of immunity, hemocytes play a major 
role. Innate immunity comprises humoral 
elements, such as “antimicrobial peptides 
(AMPs)”, “pattern-recognition receptors (PRRs)” 
and “phenoloxidase cascade components”. In 
response to pathogen recognition by PRRs, 
immune pathways are activated. Thus, AMPs 
and anti-pathogenic molecules are produced 
[21,1,22], stimulating other defense mechanisms. 
Current knowledge about the pathways involved 
in the immune signaling of insects is primarily 
based on the findings of research done so far in 
mosquitoes and Drosophila [23]. In response to 
diverse pathogens, the immune pathways in 
insects [JAK/STAT signaling pathways and 
immune deficiency signaling pathways (Toll, 
Janus kinase/STAT)] are activated. The Imd 
pathway, the NF-kB signaling route in insects, 
regulates the body's immune response against 
viruses, bacteria and P. falciparum [24,25]. 
Another NF-kB pathway in insects is the Toll 
route. Gram-positive bacteria, viruses, and fungi 
are the main players in activating this enzyme 
[26,27]. As an interferon-induced signaling route, 
evidence suggests that JAK/STAT is involved in 
the immunity to insects to viruses, bacteria and 
malaria parasites [28]. A mosquito's microbiota 
can determine the vector's susceptibility to 
human pathogen infection by influencing the 
immune system, which simultaneously shows 

antibacterial, antiparasitic, and antiviral 
responses [1,29]. 
 

The gut bacteria multiply rapidly after a blood 
meal, stimulating the immune system to combat 
micro-organisms. With the help of the 
Peptidoglycan Recognition Protein, the midgut 
epithelium detects the peptidoglycan of the 
bacterial cell wall, triggering an immune 
response using the Imd pathway.Currently, it is 
not clear how Imd immune signaling affects 
parasite colonization.This immune signaling, 
however, increases the expression of TEP1, 
which plays an important role in microbiota-
dependent pathogen control [28]. In 
Plasmodium-infected mosquitoes, ookinete 
numbers are decreased with the gut epithelium's 
decrease in microbiota load. Thus the 
microbiota-influenced immune response can 
defend against the invading pathogens before 
the action of host’s complement system [28]. 
Mosquitoes are also influenced by their 
microbiota composition regarding vector 
competence. A dynamic community of intestinal 
bacteria, viruses, fungi, and archaea, known as 
the gut microbiota, has been found to affect 
humoral immunity and vaccine effectiveness, 
which opens up the possibility of engineering 
microbiomes for optimum immune responses. In 
future research, to gain a deeper understanding 
of the role of gut microbiota in the growth of host 
immunity, we will decode the relationship 
between microbiome variations and pathogen-
specific systemic and mucosal immune 
responses by studying gut microbiota variation. 
Mosquitoes use many pathways and molecules 
in response to infectious agents. In their gut, 
female mosquitoes transmit various bacteria, 
predominantly Gram-negative [10]. 

 

 
 

Fig. 1. Schematic diagram of mosquito’s innate immune pathways activated by various 
pathogens 
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3. MOSQUITO GUT MICROBIOTA 
 
The microbiomes that live in the mosquito's 
midgut have a proven ability to prevent the 
spread of pathogens. Using the sequencing of 
the “16S rRNA gene” and the use of the MiSeq 
technology, [30] described field collected 12 wild 
bacterial species of mosquitoes from 
Champaign, Illinois. The gut microbiota 
population varied noticeably among the members 
of the same species. But certain mosquito 
species showed similar gut microbiota makeup in 
their individual members. The remaining 
sequences underwent quality screening and 
rarefaction before being allocated to 181 (one 
hundred eighty one) operational taxonomic units 
(OTUs). 80% of these OTUs were found two (02) 
different mosquito species, according to the 
survey. On the other hand, all 12 species of 
mosquito had the three “OTUs Gluconobacter 
(OTU 1), Propionibacterium (OTU 9), and 
Staphylococcus (OTU 31)” [30]. 
 
Gram-negative bacteria dominate the mosquito 
gut microbiota. An earlierexperimental study 
recognizedabout 98 (ninety-eight) bacteria 
genera inAnopheles mosquito.Among them, the 
most common bacteria genus includes 
Aeromonas, Pseudomonas, Comamonas,   
Asaia, Elizabethkingia,Klebsiella, Enterobacter, 
Serratiaand Pantoea [30]. On the other hand, 
gram-negative bacteria dominate the Aedes 
mosquito [31]. Apart from the pro-bacteria, the 
abundance of“18S rRNA”within the mosquito 
host indicates the presence of the eukaryotic 
microbiota, which will be confirmedby 18S rRNA 
gene sequencing. But the community of 
eukaryotic microbes in mosquitoes keeps poorly 
studied. Individuals from the same species and 
study site usually harbour different gut microbes. 
On the other hand, the microbiota of Ae. 
albopictus was significantly least diverse 
compared to An. quadrimaculatus, An. crucians, 
Ae. Ae. triseriatus, Culex resturans and 
japonicas [32]. 
 
The microbial community of “Ae. Albopictus” and 
“Cx. Pipiens” was markedly different from those 
of other mosquito species and was dominated by 
Wolbachia [32]. Several researchers have 
studied the composition and structure of the gut 
microbiota of various mosquito species. Findings 
from their studies may provide the variation in 
microbial composition and the role of individuals 
in vector competence for diverse pathogens and 
its potential utility in preventing and treating 
illnesses brought on by these infections. 

Anopheles mosquitoes host diverse bacterial and 
non-bacterial communities in their midgut and 
develop a complex ecosystem. It has been 
reported that Comamonas, Acinetobacter, and 
Pseudomonas showed dominancy in bacterial 
ecosystems inhibiting salivary and female 
reproductive organs of Anopheles mosquitoes 
[13]. Several evidence shows that Anopheles 
midgut microbiota plays a significant role in 
parasitic malarial disease transmission. Tchioffo 
et al. (2016) reported that the abundance of 
Serratia in salivary and midguts exhibited a 
considerable difference between P. falciparum 
mosquitoes that are both infected and 
uninfected. Furthermore, the presence of 
Serratia in those tissues in mosquitoes with 
malaria suggests that the interaction between 
micro-organisms and parasites may facilitate 
malaria infection through some unidentified 
mechanism. Thus, targeting this bacterium may 
be a promising tactic for the management of 
falciparum malaria. 
 
The bacterial community structure of Culex 
mosquito was best studied in C. tarsalis by 
Duguma et al. (2015). They performed beta 
diversity objectivity and indicated that the 
bacterial structure altered among different 
developmental stages of C. tarsalis. Thorsellia, a 
gammaproteobacterium, was found to be most 
abundant among the three stages of life (larvae, 
pupae and adults) of field C. tarsalis, but was 
infrequent in laboratory-cultured mosquito 
colonies. It has been found that the proportions 
of Thorsellia were highest in Pupae and lowest in 
newly emerged adults [33]. Thus the role of 
Thorsellia in Culex transmitted diseases have to 
be evaluated and the distribution of Thorsellia 
across different species of Culex warrant further 
investigation. 
 

4. EFFECT OF MICROBIOTA ON 
PATHOGEN TRANSMISSION 

 

4.1 Wolbachia (WLBC) 
 
The most elaborately studied microbial approach 
to diminish the vector competence of various 
mosquito species utilizes Wolbachia (WLBC). 
Approximately 60% of insects are infected with 
this endosymbiont [34]. It has been repeatedly 
reported that this endosymbiont can manipulate 
host reproduction and transmit vertically within 
the insect community [35]. WLBC mainly relies 
on cytoplasmic incompatibility (CI) to facilitate its 
spread within insect populations. When an 
infected male WLBC mates with a female who is 
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not infected or infected with an incompatible 
strain, CI occurs and results in embryonic death. 
When an infected female mates in the 
population, it transmits Wolbachia within insect 
populations [35]. WLBC-mediated CI is an 
incompatible insect technique (IIT) that may 
reduce mosquito populations [36,37]. The ability 
of WLBC to confer pathogen interference, induce 
CI, and transmit vertically may make it an 
attractive candidate for controlling mosquito-
transmitted diseases. 
 

WLBC can block the maturation of 
variouspathogens. Ae. aegypti is generally 
uninfected by WLBC. The anti-pathogenic effect 
is particularly enhanced when WLBCis artificially 
transferred into that vector [38]. An infection with 
wAlbA and wAlbB strains of WLBC was recently 
reported in Ae. albopictus mosquitoes collected 
in Florida, USA [39]. Transinfected Ae. Aegypti 
have diminished vector competence to 
arboviruses such as dengue virus [40,41,42], 
yellow fever virus [43] zika virus [44,45] and 
chikungunya virus [8,44]. In addition, WLBC-
based control strategies are also under 
examination for Japanese encephalitis vectored 
by C. tritaeniorhynchus [46]. Ae. albopictus 
infected with wAlbA and wAlbB exhibited antiviral 
activity after transinfection with novel strains [47]. 
Prior to the introduction of the novel wMel strain, 
resident strains would be removed from 
Drosophila by antibiotic treatment. Ae. albopictus 
with wMel-infection have lower vector 
competence for dengue virus than uninfected 
and double infected (with wAlbA and wAlbB) 
mosquitoes [47]. Native WLBC infections reduce 
the West Nile virus load in Cx. Quinquefasciatus 
and dengue and chikungunya virus load in Ae. 
albopictus [48,49,50]. But infection with natural 
WLBC strains makes the vector more competent. 
Compared to the management of arboviral 
infections, implementing WLBC-based control 
techniques against human malaria continues to 
be more difficult. The wMelPop strain can 
interfere with developing a murine malaria model, 
P. berghei [51]. Infection with the wAlbB strain 
causes CI in An. Stephensiand thus markedly 
blocked P. falciparum [52]. The infection with this 
bacterium exerted a substantial fitness cost on 
the host and may also contribute to malaria 
control strategies. WLBC infections have been 
discovered in some Anopheles populations 
[53,54].  
 

4.2 Gut Microbiota  
 

The midgut of a mosquito represents the first  
and key obstruction for developing various 

pathogens. The microbiota in its lumen is the 
major cause of such a bottleneck. 
Experimentation has been used in many different 
ways to study the effect of Anopheles' midgut 
microbiome on the spread of the Plasmodium 
infection.The findings obtained from these 
studies reveal an in the total inhibitory action of 
the microbial community on the pathogens. The 
inhibitory effects are independent of the vector 
and pathogen species, and are mostly specific 
for bacterial strains [55,28,56,57]. Mainly gram-
negative bacteria show anti-parasitic effects 
[56,57]. 
 
The Anopheles microbiota can impede 
Plasmodium colonization in the mosquito gut 
mainly by activating the mosquito’s immune 
responses and producing anti-Plasmodium 
metabolites, which directly reduce parasite 
survival. Blood sucking stimulates the very fast 
multiplication of mosquito gut bacteria and 
triggers antimicrobial immune responses. Within 
the midgut epithelium, the Imd pathway mainly 
triggers these immune responses. The Imd 
pathway is stimulated by the binding of bacterial 
cell wall peptidoglycan with “Peptidoglycan 
Recognition Protein (PGRP)” of the midgut 
epithelium of the mosquito vector [58,59,60]. The 
Imd pathway enhances theexpression of TEP1. It 
has been reported that TEP1 is associated with 
the microbiota-mediated control of Plasmodium 
infection [61,62]. Gao et al. (2019) found that the 
ookinete numbers were reduced in the mosquito 
gut epithelium,which was dependent on 
microbiota load. It suggests microbiota-induced 
immunity may quickly affect Pasmodium infection 
even before the complement system action [63]. 
Metabolites of some micro-organisms locating 
within the mosquito gut can directly impair the 
colonization of Plasmodium and suppress its 
infective potential to the mosquito.  
 
Gram-negative enterobacteria are harbouring in 
An. arabiensis mosquito gut was found to 
diminish a load of various stages of P. falciparum 
in An. gambiae through the generation of 
reactive oxygen species (ROS) and inhibition of 
the antioxidant parameters of the parasite 
[28,64]. Antioxidant enzymes in the mosquito gut 
have been documented to be able to be inhibited 
by Plasmodium infection, and their interaction 
has been proven to be mutual. This incidence 
reduces the mosquito microbiota and 
consequently enhances pathogenic infection 
[65]. Serratia marcescens and Chromobacterium 
spp are reported to reduce the P. falciparum 
infection in Anopheles mosquito and exhibited in 
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vitro anti-parasitic activity through secreting 
metabolites [59,66]. In addition, the yeast 
Wickerhamomyces anomalus from the gut of An. 
stephensi produces a lethal toxin with β-1,3-
glucanase activity. Thus it can inhibit in vitro 
development of P. berghei ookinetes [67].  
 
Besides, the effects of Anopheles microbiota on 
Plasmodium and some other consequences are 
indirectly examined in several literatures. 
Moreover, the microbiota plays a role in the 
production of the peritrophic matrix that is found 
in the gut epithelium. Peritrophic matrix is a chitin 
and protein-composed layer that has been 
synthesized after blood-feeding surrounding the 
midgut epithelium. This barrier prevents malaria 
parasites from entering the body cavity and 
prevents germs from the midgut from entering 
the body cavity [35]. Plasmodium ookinetes 
synthesize and secrete chitinase enzyme to 
cross this peritrophic matrix [21]. With this 
stance, one can say that this mechanism may be 
a microbiota-induced colonization resistance 
operation against Plasmodium. Moreover, the 
microbiota can also nutritionally affect the 
malaria parasite in the mosquito gut. The 
sequencing of the entire genomes of the bacteria 
that make up the mosquito microbiome led to the 
discovery that these bacteria have genes that are 
involved in the digestion of macromolecules 
found in the host [68]. However, it is yet to be 
known whether the symbiont with this digestive 
potential results in an advantage for the mosquito 
host, invading pathogens, or nutrient competition 
between the host and parasite. As for example, 
the endosymbionts in Drosophila cause 
resistance to virus infection partially due to 
competition for cholesterol [69]. It has been 
reported that Plasmodium manipulates its 
nutritional requirement at early developmental 
stages by overproducing digestive enzymes. So, 
nutrient availability is a limiting factor for 
Plasmodium colonization [70]. 
 
Some species of gut bacteria can directly alter 
the transmission of pathogens in mosquitoes 
while not affecting the vector's immune 
response. Bacteria such as Enterobacter 
ludwigii, Pseudomonas rhodesiae, and 
Vagococcus salmoninarium were isolated from 
the midgut of Ae. albopictus all block La Crosse 
virus infection simultaneously, which suggests 
that these bacteria may secrete anti-viral 
compounds into the environment in which they 
live [71]. Panama strain of Chromobacterium 
sp.produces an aminopeptidase that can break 
down the dengue virus envelope, thus 

decreasing dengue infection in Ae. aegypti [72]. 
Chromobacterium sp. also synthesizes 
rhomidepsin, an anti-parasitic protein that inhibits 
the infection of P. falciparium in An. gambiae 
[73]. An Enterobacter from wild An. arabiensis 
populations in Zambia were reported to produce 
ROS and can intervene with P. falciparum growth 
before the midgut epithelium invasion [9]. 
Mosquito gut bacteria may promote the infection 
rate of vectored pathogenic microbes. Serratia 
odorifera secretes a polypeptide, P40, which 
interacts with a cysteine-rich protein, prohibitin, 
which is needed for mosquito infection. Thus, this 
bacteria species inhibits the host's immune 
response and increases the host's susceptibility 
to virus infection [74,75,76]. S. marcescens 
secretes a protein named smEnhancin that 
digests peritrophic matrix-associated mucins and 
thus makes the vector more prone to an 
infectious virus [77]. The interplay between the 
mosquitoes and their gut-associated microbiota 
and transmitted pathogenic organisms is not only 
a one-way relationship, but it is obvious that 
vectored pathogens can shape the composition 
of bacterial population and the microbial load in 
the mosquito midgut. For example, P.vivax 
significantly reduces the microbial load during the 
pre-invasive phase when ookinetes and oocysts 
infect the host gut [78]. Thus Plasmodium can 
control bacterial growth before ookinete invasion 
by reducing the microbiota-influenced immune 
response. Besides, the Zika virus can change the 
composition of the microbial community in Ae. 
aegypti [79] and the Chikungunya virus 
enhances the multiplication of 
Enterobacteriaceae in Ae. Albopictus [80].  
 

5. PARATRANSGENESIS: MICROBIOTA-
MEDIATED CONTROL OF VECTOR-
BORNE DISEASES 

 

Bacteria, viruses or parasites colonize and 
replicate in various mosquito organs, mostly 
midgut and rarely salivary glands, hemolymph, 
male accessory glands and female ovaries [81]. 
Though, most research done so farhasfocused 
on gut microbiota. The midgut and ovary of adult 
mosquitoes share several prevailing bacteria 
classes and some other bacteria which are 
specific for tissues or developmental stages [82]. 
The accumulated knowledge about the insects 
and resident microbiota interaction promotes the 
progression of some microbiota-dependent 
interruption techniques for controlling mosquito-
borne diseases. The principal of these 
microbiota-dependent interruptions of vector-
borne diseases is the use of genetically 



 
 
 
 

Bhowmik et al.; Uttar Pradesh J. Zool., vol. 44, no. 5, pp. 76-89, 2023; Article no.UPJOZ.2483 
 
 

 
82 

 

manipulated symbionts for the production                   
and secretion of effector molecules to decrease 
the vector competence for that parasite 
[83,84,21].  
 
In Paratransgenesis, selecting a symbiont, which 
has to be manipulated genetically, is crucial [85]. 
A perfect candidate symbiont must have a stable 
relationship with its insect vector, be able to 
transmit vertically or horizontally, and persist for 
an extended period to create effectors [86]. 
Second, the symbiotic bacteria should be simple 
to cultivate and genetically modifiable [84]. 
Thirdly, the designed symbiont should not affect 
the host's fitness and should be as suitable as 
the wild type one [83]. Finally, the symbiont must 
create and secrete some hostile chemicals to 
interact with the virus more effectively [84]. 
Various projects regarding paratrangenesis have 
been explored as a parasitic disease control 
technique. Riehle et al. (2007) reported that 
engineered E. coli expresses the two antimalarial 
molecules, phospholipase, salivary gland, and 
midgut peptide 1. But the bacterium could not 
persist long in the Anopheles gut, and the 
expression of functional phospholipase was toxic 
to the bacterium [87].  
 
The symbiotic bacteria of the mosquito belonging 
to Asaia, Pantoea and Serratia have been 
scrutinized as promising for the paratransgenesis 

technique. Pantoea agglomerans are distributed 
in the gut of Anopheles. This non-pathogenic 
bacterium has been engineered for the 
production and secretion of a few anti-
Plasmodium factors. [87,17]. Serratia colonizes 
males and females of An. stephensi mosquitoes 
which have a very low fitness cost for that insect 
[88]. Asaia, a symbiotic bacterium of Anopheles 
and Aedes mosquitoes, has been engineered to 
produce effector molecules showing inhibitory 
efficacy against P. berghei [89,90]. Recently, a 
modified strain of Asaia, is reported as proficient 
in stimulating the host immune system against 
the heartworm (Dirofilaria immitis) infection [91]. 
Paratransgenic technique had also been 
examined on trypanosomiasis and 
leishmaniases. The symbiont Sodalis has been 
identified as a promising micro-organism to block 
trypanosome transmission in the tsetse flies. An 
effector molecule from the engineered Sodalis 
‘attacin’ has been identified as a potential 
inducible immune peptide showing efficacy 
against protozoans and some gram-negative 
bacteria [92]. 
 
Some non-bacterial micro-organisms have been 
studied for their prospective use in 
paratransgenesis. Metarhizium robertsii, a 
fungus [21], densonucleosis viruses [93,94] are 
found to be a promising agent for 
paratransgenesis. 

 

 
 

Fig. 2. Application of paratransgenesis to control mosquito-borne diseases by inhibiting 
pathogen development within the mosquito vector 
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6. FUTURE PERSPECTIVE ON THE 
ROLE OF GUT MICROBIOTA                 
IN ERADICATING MOSQUITO-
TRANSMITTED INFECTIOUS 
DISEASES 

 
Mosquito midgut hosts a variable and dynamic 
microbiota. The composition of microbial 
communities differs significantly between species 
or individuals of the same species. This variation 
mostly depends on environmental factors 
(seasonality, larval breeding site), individual 
history (diet, blood-feeding history), and also on 
host genetic identity, which can strongly 
influence the content of midgut bacteria [11]. 
Several studies have reported the high diversity 
in the microbial composition between individuals 
of the same habitat independently of the 
mosquito species [59]. Moreover, it has also 
been reported that the mosquito’s microbial 
composition is not random, some bacterial 
genera are routinely found in individuals of the 
same species. These Gram-negative bacteria 
are mostly aerobic or facultative aerobic, and 
belong to the families Acetobacteraceae, 
Enterobacteriaceae and Flavobacteriaceae.  
 
Anopheles mosquitoes mainly host several 
typical microorganisms or enterotypes rather 
than a core microbiota obtained from their 
environment, individual history and host genetics. 
Remarkably, laboratory-reared mosquitoes 
exhibit a lower diversity in the midgut bacterial 
community than field-collected ones, which share 
most of the bacteria species in common [33,95]. 
But most of the research on the interactions 
between infected pathogens and the microbiota 
harbouring the vector has been done on 
laboratory-reared mosquitoes. In the case of 
laboratory-reared mosquitoes, the composition of 
microbiota differs between insectaries due to the 
variations in husbandry and habitat [95]. Thus 
this variability can explain the discrepancies in 
results obtained from various vector biology 
laboratories. Boissiere et al. (2017) and Tchioffo 
et al. (2016) reported that the abundance of 
Enterobacteriaceae or S. marcescens, a gram-
negative bacterium in An. gambiae adults 
derived from field-collected larvae showed a 
positive correlation with parasite infection. 
Furthermore, suitable microbiota models are 
urgently needed to more elaborately understand 
the tripartite relationship between the microbiota, 
various pathogens and their mosquito host. 
Selecting the most relevant model to answer the 
scientific queries and merging the use of such 

relevant models may propagate the current 
understanding of vector biology. It may also help 
control parasitic disease transmission [10]. 
 

7. CONCLUSION 
 

In the last two decades, the crucial role of the 
microbial flora of mosquitoes in the invasion of 
pathogen, development of infection and 
transmission of pathogenic infection has 
gradually flourished. Moreover, the tripartite 
interplay between the pathogen, the mosquito 
vector and its microbiota may answer the most 
thirsting queries about controlling various 
mosquito-transmitted diseases. Thus this 
complex relationship still needs more detailed 
investigation. The Anopheles microbiota can 
decrease malarial infection. They can also 
manipulate the host's physiological processes, 
including its lifespan. The microbiota-mediated 
effects remain compatible irrespective of the 
species of Anopheles and Plasmodium, which 
suggests that the interaction between mosquito, 
microbiota and Plasmodium is a stable system 
and each plays a significant role in shaping the 
tripartite interaction. Although our understanding 
of the bacterial part of mosquito microbiota 
continuously expands, numerous elements 
surrounding the microbiota-mediated prevention 
of vector-borne diseases have not been entirely 
clarified yet. This represents the main challenge 
of this domain. The bacterial components of the 
mosquito microbial flora have mostly received 
more research attention than the non-bacterial 
components. It has been suggested that 
eukaryotes and viruses could inhibit pathogenic 
infection. Yet, it is also unclear if the microbes 
found in the salivary glands or reproductive tract 
impair disease transmission or host fitness. Also, 
the majority of the microbiome study conducted 
up to now used mosquitoes reared in 
laboratories. Yet, their microbial community 
differs from that of mosquitoes that were taken 
from the wild. 
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