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ABSTRACT 
 

Human health has been greatly impacted by the use of antibiotics, which have become essential in 
modern medicine. The treatment of bacterial infections with antibiotics decreased childhood 
mortality and raised life expectancy. Global public health is seriously threatened by antibiotic 
resistance. The multi-drug resistance (MDR) pandemic has spread quickly throughout many 
nations, with some instances going untreated. This has led to greater mortality rates, longer 
hospital stays, increased medical expenditures, and more. The primary culprits behind nosocomial 
infections are thought to be a variety of multidrug-resistant (MDR) such as A. baumannii, 
Pseudomonas aeruginosa, Enterobacteria that produces extended-spectrum beta-lactamase 
(ESBL), and carbapenem-resistant CRE. The most prevalent bacterial pathogens have been 
identified as Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant 
Enterococcus (VRE), according to recent reports. The primary factors in the development of 
antibiotic resistance are the subject of this review. 
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1. INTRODUCTION 
 

“Antibiotics have played a central role in modern 
medicine and their use has had a significant 
impact on human health. Their advancement has 
raised life expectancy, decreased childhood 
mortality, and given us a crucial tool for invasive 
surgery and the treatment of bacterial infections. 
One of the biggest threats to global public health 
is antibiotic resistance (AR). Antibiotic-resistant 
bacteria (ARB) infections are linked to higher 
rates of death, the need for hospitalisation, 
longer hospital stays, and greater medical 
expenses” [1].  
 

“Water systems connect people at home, in 
hospitals, in agriculture, and on animal farms 
from their source to the stream. These systems 
take input from a variety of sources in a range of 
environmental circumstances” [2]. “They serve as 
networks for bacteria, plasmids, phages, 
antibiotic resistance genes (ARGs)” [3]. “The 
destiny of ARB and ARGs in the water systems 
is influenced by a number of factors, including 
temperature, the richness of organic matter, 
redox conditions, and the concentrations of 
metals, antibiotics, and biocides. These factors 
also affect the ecosystems and their habitats” [4]. 
“Mutations, horizontal gene transfer (HGT), and 
other genetic processes are the main factors 
facilitating the evolution of ARGs in aquatic 
environments. It is thought that conjugative 
transfer via mobile genetic elements—such as 
plasmids and transposons, or ICE—is 
widespread and has the ability to spread ARGs 
to bacteria in unrelated phyla” [5]. Another 
significant mechanism that non-antibiotic 
medications and disinfectants can support is 
natural transformation [6,7].  
 

2. ANTIBIOTIC RESISTANT BACTERIA 
(ARB)  

 

Genes or mutations that are beneficial to 
bacterial survival in the presence of antimicrobial 
drugs may be present in bacterial genomes. 
Bacteria that are susceptible to antibiotics can 
develop resistance through either de novo gene 
mutation or by obtaining resistance genes from 
other bacterial cells. Hence, selection pressure 
causes resistance to develop as a result of 
widespread misuse of antibiotics [8]. “Horizontal 
gene transfer (HGT) can result in the acquisition 
of antibiotic resistance in cells, even when those 
cells belong to different species or genera” [9].  
“Nowadays, the release of a new antibiotic onto 

the market is nearly always accompanied by the 
rise of resistance bacterial strains. The creation 
of novel, potent antibiotics and antibacterial 
compounds depends on a thorough 
understanding of the mechanisms behind the 
emergence of drug resistance” [10].  
 

“ARGs have been found in ancient DNA retrieved 
from both environmental and human ancestor 
samples, indicating that bacterial antibiotic 
resistance mechanisms predate human usage of 
antimicrobials” [11]. “The acquisition of ARGs 
may have been accelerated by resistance gene 
transfer and widespread use of antibiotics, as 
studies have also found higher numbers of ARGs 
in the genomes of contemporary strains of some 
bacteria (such as those belonging to the genera 
Pseudomonas and Clostridium) than in strains 
recovered from the microbiome of ancient human 
ancestors” [12].  
 

3. MULTIDRUG RESISTANCE BACTERIA 
(MDR) 

 

Pathogenic organisms that exhibit resistance to 
several chemotherapeutic drugs are said to have 
multidrug resistance. MDR is a perfectly normal 
process that occurs in bacteria, but it is 
becoming more common for a variety of reasons, 
including the use of unidentified antimicrobial 
agents, unsanitary, unclean settings, and subpar 
healthcare facilities. Because antibiotic-resistant 
microorganisms are a constant threat, there 
aren't many antimicrobial medicines available to 
treat other illnesses [13,14]. “The quick spread of 
multi-drug resistance (MDR) in many nations, 
some of which lack a treatment option, is one 
particular cause for concern. Extensive drug 
resistance (XDR) denotes non-susceptibility to at 
least one agent in all but one or two antimicrobial 
classes, and pan-drug resistance (PDR) denotes 
non-susceptibility to all agents in all available 
antimicrobial classes. MDR is defined as the 
acquired non-susceptibility to at least one agent 
among three or more antimicrobial classes” [15]. 
“Water, dirt, wastewater, sewage, plants (fruit, 
vegetables, herbs), raw meat, dairy products, the 
upper respiratory tract, the gastrointestinal tract, 
and human and animal skin are natural habitats 
and reservoirs for multi-drug resistance bacteria 
(MDRB). Another well-known source of MDRB is 
livestock, including pigs, cattle, and poultry. It is 
also feasible for MDRB to spread through food 
items and water. MDRB contamination of 
drinking water, milk, and meat products has been 
shown in numerous articles” [16].  
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4. RESISTANCE EVOLUTION IN THE 
ENVIRONMENT  

 

Antibiotic resistance can result from foreign DNA 
absorption as well as alterations in the 
bacterium's pre-existing genome. In the patient 
or animal receiving the antibiotic, mutations 
easily develop and become fixed. Somewhere 
else, diseases are not subject to such a strong 
selection pressure. Furthermore, the process is 
not influenced by the genetic reservoir found in 
other species. Therefore, it is generally less 
expected that external factors will play a 
significant role in the mutation-based evolution of 
resistance that most infections experience. The 
variety of the human and domestic animal 
microbiota is far less than that of the gene pool 
found in water, soil, and other habitats with highly 
varying ecological niches when it comes to the 
uptake of novel resistance components [17,18]. 
The ambient microbiome is remarkably diverse, 
offering a multitude of genes that pathogens may 
acquire and utilise to counteract the effects of 
antibiotics. This is, in fact, its most remarkable 
characteristic [19]. At least some of the 
pathogens targeted by all licenced antibiotic 
classes to date—whether they are synthetic, 
semi-synthetic, or natural compounds—have 
developed resistance to them. According to this, 
unless we have a paradigm shift in the way we 
think about the design of antibiotics, external 
surroundings already include resistance 
elements for any antibiotics that will ever be 
discovered [20]. “Genes can be transferred into 
human infections, therefore their presence is 
concerning even although few studies have 
established the existence of ESBL, MRSA, and 
VRE producers in the environment, where they 
can operate as a reservoir of such resistance” 
[21]. “Numerous multidrug resistant (MDR) 
bacteria have been identified in hospital and 
municipal sewage systems, as well as in the soil 
surrounding animal farms and contaminated 
rivers. These findings raise the possibility that 
these bacteria could contribute to the spread of 
antibiotic resistance and develop into pathogens. 
Because of their increasing clinical significance 
and resistance to several medicines, they have 
begun to resemble both environmental and 
clinical microorganisms” [22,23]. 
 

5. COMMON ANTIBIOTIC-RESISTANT 
BACTERIAL SPECIES  

 

Globally, infections linked to health care increase 
rates of morbidity and mortality. Antimicrobial 
resistance, which restricts the use of antibiotics 
and makes it more challenging to treat infections 

brought on by multiresistant microbes, is directly 
linked to the rise in mortality. Infections with 
gram-negative bacteria that are resistant to 
carbapenem, primarily Enterobacteria, emerged 
as a significant public health concern at the start 
of the twenty-first century [24]. Nosocomial 
infections are thought to be mostly caused by 
MDR gram-negative bacteria, such as A. 
baumannii, Pseudomonas aeruginosa, 
Enterobacteria that produce extended-spectrum 
beta-lactamase (ESBL), and Enterobacteria that 
are resistant to carbapenem [25]. “The World 
Health Organization (WHO) has identified the 
genera Pseudomonas, Acinetobacter and 
Enterobacter as those belonging to the Gram-
negative family of bacteria for which new and 
effective medications are desperately needed. 
They are used as “the last line of antibiotic 
defence” against resistant organisms because, 
among other things, they produce an extended 
spectrum of β-lactamases (ESBLs) that confer 
resistance to antimicrobials like cephalosporins, 
penicillins, and monobactams. Additionally, they 
include an increasing number of strains that are 
resistant to carbapenem” [26,27]. Concerningly, 
during the past 10 years, there has been a 
noticeable global rise in nosocomial CRB 
(carbapenem-resistant bacterium) infections; 
infections caused by Acinetobacter and 
Pseudomonas have been linked to 40–80% 
mortality in intensive care units [28,29].  
 

According to current reports, the most prevalent 
bacterial diseases are vancomycin-resistant 
Enterococcus (VRE) and methicillin-resistant S. 
aureus (MRSA). Hospitals have also been shown 
to harbour animal products, water, and animals. 
Although some strains of MDR P. aeruginosa, 
Carbapenem-resistant Enterobacteriaceae, and 
A. baumannii have also been recovered from 
foods, animals, and water, clinical samples have 
been the primary source of these germs.  
 

A large number of these organisms are 
opportunistic infections that contaminate the ill or 
immunocompromised. A lot of these bacteria 
seem to be found in large quantities in nature, 
and a contaminated environment can promote 
their proliferation. Public health is also greatly 
concerned about the Gram-positive methicillin-
resistant Staphylococcus aureus (MRSA) and 
vancomycin-resistant Enterococcus (VRE) 
bacteria. It is well recognised that both have the 
capacity to spread epidemics [30].  
 

The World Health Organization released the first-
ever list of antibiotic-resistant "priority 
pathogens," which is a catalogue of 12 bacterial 
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families that are the biggest threats to human 
health. According to how urgently new antibiotics 
are needed, the WHO list is split into three 
categories: critical, high, and medium priority 
[31]. 

 
Priority 1: CRITICAL 

 
• Acinetobacter baumannii, carbapenem-

resistant 

• Pseudomonas aeruginosa, carbapenem-
resistant 

• Enterobacteriaceae, carbapenem-resistant, 
ESBL-producing 

 
Priority 2: HIGH 

 
• Enterococcus faecium, vancomycin-

resistant 

• Staphylococcus aureus, methicillin-
resistant, vancomycin-intermediate and 
resistant 

• Helicobacter pylori, clarithromycin-resistant 

• Campylobacter spp., fluoroquinolone-
resistant 

• Salmonellae, fluoroquinolone-resistant 

• Neisseria gonorrhoeae, cephalosporin-
resistant, fluoroquinolone-resistant 

 
Priority 3: MEDIUM 

 
• Streptococcus pneumoniae, penicillin-non-

susceptible 

• Haemophilus influenzae, ampicillin-
resistant 

• Shigella spp., fluoroquinolone-resistant 
 

5.1 What Mechanisms Bacteria Use to 
Adapt? 

 

There is no one mechanism responsible for the 
fast spread of AMR throughout bacterial 
populations. Frequently, it is the outcome of 
intricate procedures. Therefore, before analysing 
the factors that cause resistance to these 
molecules, antibiotics must be divided into 
groups based on their distinct mechanisms of 
action. We have chosen to discuss the antibiotic 
classes that are most directly related to the 
development of antibiotic resistance in this 
review, despite the fact that there are many 
distinct classes of antibiotics. The modes of 
action and resistance of the major antibiotic 
families are presented in Table 1 the primary 
ways in which antimicrobial drugs function. 
Reduced drug uptake, altered drug targets, drug 
inactivation, and activation of drug efflux pumps 
are the primary causes of resistance [32,33]. 
 

5.2 Antibiotic-Resistant Pathogens 
 
5.2.1 Acinetobacter baumannii 
 
“Gram-negative aerobic bacillus Acinetobacter 
baumannii is a member of the group of 
pathogens known by the acronym ESKAPE 
(Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumonia, Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacter 
species), which stands for the ability of these 
bacteria to evade the effects of antibiotic 
bactericidal activity” [34]. A. baumannii is an 
opportunistic pathogen that can become resistant 
to antibiotics through a variety of ways. It is a 
global cause of hospital-acquired infections. 

Table 1. Antibiotic resistance mechanisms and modes of action 
 

Antimicrobial Groups Mechanism of Action Resistance Mechanism 

β-Lactams Penicillins Inhibits cell wall  
production 

Beta-lactamase production Penicillinase 

Cephalosporins  
Carbapenems 

Cephalosporinase Carbapenemase 

β-Lactamase inhibitors Block the activity of beta-
lactamase enzymes 

Extended-spectrum beta-lactamase (ESBL) 

Aminoglycosides, 
Chloramphenicol 
Macrolides, 
Tetracyclines 

Inhibit ribosome assembly 
by binding to the bacterial 
30S or 50S (inhibit protein 
synthesis) 

Multifactorial (enzymatic modification, 
target site modification and efflux pumps) 

Fluoroquinolone Inhibit DNA replication Multifactorial (target-site gene mutations, 
efflux pumps and modifying enzyme) 

Sulfonamides and 
trimethoprim 

Inhibit folic acid  
metabolism 

Horizontal spread of resistance genes, 
mediated by transposons and plasmids, 
expressing drug-insensitive variants of the 
target enzymes. 
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The rapid evolution of this strain toward multi-
resistance could be attributed to the creation of 
all four classes of β-lactamases (A, B, C, and D) 
by the integration of exogenous DNA into its 
genome [35]. Furthermore, genes encoding for 
ESBL (GES-11 and CTX-M) and narrow-
spectrum β-lactamases (TEM-1, SCO-1, and 
CARB-4) have been found in Acinetobacter spp. 
[36]. With the exception of monobactams, class 
B β-lactamases are metallo-β-lactamases 
(MBLs) with a wide substrate range of inhibition 
[37]. A class of widely distributed enzymes 
known as class C β-lactamases is typically 
resistant to cephamycins (cefoxitin and 
cefotetan), penicillins, and cephalosporins [38]. 
Additionally, A. baumannii has Class D, or OXAs 
β-lactamases, which are capable of hydrolyzing 
carbapenems and extended range 
cephalosporins [39]. Additionally, AmpC 
cephalosporinase is inherent to A. baumannii 
[40]. 
 
“Efflux pumps have a role in A. baumannii 
bacterial resistance to many antibiotics from 
different chemical classes, including 
trimethoprim, aminoglycosides, tetracyclines, 
erythromycin, chloramphenicol, fluoroquinolones, 
and various beta-lactams” [41,42]. 
 
“Three kinds of enzymes—phosphotransferases, 
adenylyl transferases, and acetyltransferases—
are essential to A. baumannii resistance to 
aminoglycosides. Transposons and plasmids are 
two ways that the genes encoding for 
aminoglycoside-modifying enzymes can be 
transmitted” [43]. 
 

For the treatment of MDR A. baumannii 
bacteraemia, the combination of ampicillin, 
sulbactam, and carbapenem is the most effective 
[44]. Even while considerable rates of resistance 
have been reported, minocycline treatment is 
also beneficial [45]. Combining minocycline and 
colistin is the recommended treatment for A. 
baumannii infections that are resistant to 
minocycline, whereas colistin/rifampin is the most 
efficient treatment for A. baumannii infections 
that are resistant to colistin [46]. Moreover, 
carbapenem-resistant A. baumannii is quickly 
killed by trimethoprim-sulfamethoxazole in 
combination with colistin [47]. 
 

5.2.2 Methicillin-Resistant 
Staphylococcus aureus 

 
“S. aureus is the leading cause of nosocomial 
infections by gram-positive bacteria [48]. It is 

notoriously resistant to penicillin and many other 
antimicrobials” [49]. “Strains of S. aureus have 
developed resistance to many commonly used 
antimicrobial due to indiscriminate use. 
Staphylococcal resistance to penicillin is 
mediated by β-lactamase production. First report 
of a penicillin-resistant strain of S. aureus was 
published in 1945, revealing its association with 
β-lactamase enzyme produced by the bacteria. 
The methicillin resistant staphylococcus 
aureus (MRSA) is a specific strain of the S. 
aureus bacterium that has developed 
antimicrobial resistance to all penicillin ‘s, 
including methicillin and other narrow-spectrum 
β-lactamase-resistant penicillin antimicrobials” 
[50].  
 
The first evidence of methicillin resistance was 
found in Staphylococcus aureus in 1961 as a 
result of widespread penicillin use. Penicillinase-
producing S. aureus also became more prevalent 
after penicillin was introduced. While hospital-
acquired methicillin-resistant S. aureus (HA-
MRSA) is becoming less common, methicillin-
resistant S. aureus (MRSA) is still a major 
burden in U.S. health care settings. In contrast to 
this discovery, there has been a notable rise in 
the frequency of community-acquired MRSA 
(CA-MRSA) infections within the same area [51]. 
Due to the lack of the mecA gene, BORSA is not 
actually methicillin resistant or sensitive, and 
frequent misidentification puts patient treatment 
and outcomes at serious risk because severe 
infections may not respond to high oxacillin 
doses [52]. Overall, MRSA infections result in 
higher health care costs due to morbidity and 
length of hospital stay [53]. Methicillin resistance 
is independently linked to higher mortality, and 
the death rate after S. aureus blood stream 
infection surpasses 20 % [54,55]. 
 
5.2.3 Pseudomonas aeruginosa 
 

“Aerobic gram-negative P. aeruginosa is a 
prevalent environmental pathogen that can 
cause a wide range of acute and chronic 
nosocomial infections, including severe 
respiratory infections in patients with 
compromised host defences” [56]. “P. aeruginosa 
is the third most frequent gram-negative 
bacterium in this environment that causes 
nosocomial bloodstream infections” [57]. “Due to 
several resistance mechanisms that are both 
intrinsic and acquired from other species, P. 
aeruginosa has demonstrated intrinsic resistance 
to a variety of antibiotics” [58]. “The 
overexpression of efflux pumps, a decrease in 
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the permeability of the outer membrane, and the 
acquisition or mutation of resistance genes that 
encode for proteins that regulate the passive 
diffusion of antibiotics across the outer 
membrane are the key mechanisms of 
resistance” [59]. “Broad-spectrum antimicrobials 
with P. aeruginosa coverage, ceftazidime and 
cefepime, which belong to the third and fourth 
generations of cephalosporins, respectively, 
have been identified” [60]. “Numerous β-lactams, 
including imipenem and benzylpenicillin, can 
stimulate endogenous β-lactamase, such as 
AmpC β-lactamase. Furthermore, a gene 
mutation that results in the overexpression of 
AmpC β-lactamases can give P. aeruginosa 
resistance” [61]. “Transferable aminoglycoside 
modifying enzymes (AMEs), which reduce the 
binding affinity to their target in the bacterial cell, 
cause pseudomonas resistance to 
aminoglycosides” [62,63]. “Colistin is used in 
conjunction with an anti-pseudomonas 
medication such as imipenem, piperacillin, 
aztreonam, ceftazidime, or ciprofloxacin to treat 
MDR P. aeruginosa” [64]. 
 

5.2.4 Klebsiella pneumoniae 
 

K. pneumoniae is a non-fastidious, frequently 
encapsulated, gram-negative bacillus that 
belongs to the Enterobacterales family [65]. 
Particularly in patients with impaired immune 
systems, K. pneumoniae can cause a variety of 
nosocomial and community-acquired infections, 
such as bloodstream infections, pneumonia, liver 
abscesses, urinary tract infections, and surgical 
site infections [66, 67]. Person-to-person contact 
is necessary to get a Klebsiella infection because 
the germs cannot be transmitted through the air 
[68]. Because Klebsiella has acquired genes 
encoding enzymes like ESBLs and 
carbapenemases widely, the bacteria has 
developed a high level of resistance to antibiotics 
[69]. The most clinically significant strains of 
carbapenem-resistant Enterobacteriaceae (CRE) 
are K. pneumoniae strains that are resistant to 
the antibiotic [70]. Since carbapenems are 
frequently the last line of defence against gram-
negative persistent infections, the rising number 
of K. pneumoniae (KPC) strains that produce the 
enzyme that codes for the blaKPC-3 gene poses 
a serious risk to public health [71,72]. 
 

5.2.5 E. coli 
 

AMR Escherichia coli is known to be a major 
source of bloodstream infections and urinary 
tract infections (UTI) in both community and 
healthcare settings worldwide, despite not being 

officially recognised as a member of the 
ESKAPE group of pathogens [73]. One of the 
most typical signs of an E. coli UTI is sepsis. E. 
coli is the most common Gram-negative bacterial 
species identified from blood and urine cultures 
in Australian emergency rooms and inpatient 
settings [74]. A number of pandemic clones of 
MDR uropathogenic E. coli, including as ST131 
and ST95, have spread around the world in the 
last ten years [75]. E. coli usually obtains 
resistance genes from other Enterobacterales 
members through horizontal gene transfer. All 
throughout Europe, there is a high prevalence of 
resistance to aminopenicillins, fluoroquinolones, 
aminoglycosides, and third-generation 
cephalosporins [76]. The general state of CRE, 
including E. coli, in Europe was demonstrated to 
deteriorate between 2010 and 2018, 
notwithstanding the rarity of carbapenem 
resistance in invasive strains of the bacteria [77]. 
Moreover, strains of E. coli obtained from 
Chinese pig farms were found to be resistant to 
colistin, the last-resort polymyxin, in 2016 [78]. 
One of the biggest clinical burdens on human 
and animal health at the moment is AMR E. coli. 
 

There were comparatively many E. coli isolates 
resistant to tetracyclines, 
sulphonamides/trimethoprim, quinolones, and β-
lactams. The proportion of E. coli isolates that 
responded to phenicol and aminoglycosides was 
low. Furthermore, the presence of resistance 
genes 592 in E. coli isolates suggested a higher 
likelihood that 593 of them carried bla-genes, 
tetA, qnrS, and sul2. Ampicillin (AMP), amoxicillin 
plus clavulanic acid (AMC), and 
sulfamethoxazole/trimethoprim were found to 
have the highest resistance rates (SXT). The 
antibiotics used as last resort, meropenem 
(MEM) and ertapenem (ETP), have the lowest 
rates of resistance [79]. Treated effluent samples 
included E. coli resistant to cefoxitin, 
ciprofloxacin, and cefotaxime (containing 
manufacturers of extended-spectrum beta-
lactamases [ESBL] [80]. 
 

5.2.6 Anti-regulators  
 

The Gram-negative bacteria Vibrio cholerae is 
the cause of the cholera epidemic in humans. A 
toxin-coregulated pilus and cholera toxin (CT) 
are the two primary virulence factors in the 
pathophysiology of V. cholerae (TCP). An 
osmotic imbalance caused by the two subunits of 
CT, an ADP-ribosylating toxin, causes intestinal 
cells to produce more cAMP, which in turn 
causes diarrhoea [81]. When intestinal 
colonisation by V. cholerae occurs, TCP, a type 
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IV bundle-forming pilus, is involved [82]. ToxT, 
the master regulator, controls the expression of 
TCP and CT [83]. In a mouse infection model, 
Hung et al. found that virstatin (4-[N-(1,8-
naphthalimide)]-n-butyric acid) inhibits ToxT 
dimerization and lowers V. cholera colonisation 
[84]. ToxTazin, another small molecule inhibitor, 
decreases the pathogenicity of V. cholera by 
preventing the synthesis of an activator (TcpP) 
required for the expression of the toxT gene [85]. 
 

6. CONCLUSION 
 

In Conclusion, antibiotic resistance poses a 
formidable threat to global public health, 
requiring urgent and concerted efforts from the 
scientific, medical, and policy-making 
communities. Antibiotic resistance could usher in 
a post-antibiotic era, where common infections 
and minor injuries become life-threatening. 
Addressing antibiotic resistance demands a 
multifaceted approach. First and foremost, there 
is an urgent need for global cooperation to curb 
the inappropriate use of antibiotics in human 
medicine, agriculture, and animal husbandry. 
Public awareness campaigns can play a crucial 
role in educating the public and healthcare 
professionals about responsible antibiotic use. 
Additionally, fostering the development of new 
antibiotics and alternative treatment strategies is 
essential to stay ahead of evolving bacterial 
resistance. 
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