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ABSTRACT 
 

This study examines the biogenic silica (BSi) content in a sediment core from the southeastern 
Arabian Sea (SEAS) to reconstruct paleoceanographic changes over the past 14 kyr. The study 
investigates the grain size distribution and biogenic silica content of marine sediments. There is a 
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significant amount of silt in the sediments in the entire core, which varies between 80% and 96%. 
BSi content ranged from 3.4% to 4.4%, with notable fluctuations during key climatic events. 
Elevated BSi during the Bølling-Allerød event (13.5-13 kyr BP) suggests enhanced productivity 
linked to intensified Indian Summer Monsoon (ISM) and upwelling. Conversely, the Younger Dryas 
(12.9-11.6 kyr BP) exhibited reduced productivity, interrupted by multi-centennial scale fluctuations. 
The early Holocene (11.7-8.5 kyr BP) was characterized by low BSi, indicative of reduced upwelling 
due to increased monsoonal precipitation and freshwater influx. The Holocene Climatic Optimum 
(8.5-4.5 kyr BP) saw a resurgence in productivity, correlating with heightened ISM activity and an 
intensified oxygen minimum zone (OMZ). By the late Holocene (~6-1.1 kyr BP), BSi content 
stabilized, reflecting steady paleoproductivity under a weakened monsoon regime. These findings 
underscore the intricate link between monsoon dynamics, upwelling, and productivity in the SEAS 
during the late Quaternary. Changes in marine paleoproductivity could reflect the history of the 
marine biogenic cycle process. 
 

 
Keywords: Biogenic silica; grain size analysis; holocene; Indian summer monsoon; Southeastern 

Arabian Sea. 
 

1. INTRODUCTION 
 
The south-eastern Arabian Sea, a region marked 
by its intricate oceanographic and climatic 
interactions, plays an important role in global 
biogeochemical cycles, due to its unique 
monsoonal circulation, high primary productivity, 
and intense oxygen minimum zone. The global 
change focuses on the cycling of biogenic 
components, as climate shifts affect ocean 
productivity, which in turn influences atmospheric 
CO2 levels and the carbonate dissolution cycle. 
Therefore, Paleoproductivity evolution is crucial 
for understanding climate change mechanisms 
across geological history [1,2,3,4]. 
 
In the ocean, silicon (Si) is a key element, 
necessary for the growth of diatoms, sponges, 
radiolarians, and silicoflagellates [5,6]. The 
biogenic silica (BSi), also known as opal, is the 
chemically determined content of amorphous 
silicon. The BSi in the sediments primarily comes 
from bone deposition after the death of siliceous 
organisms in the upper water diatoms, which 
accounts for the majority of BSi production [7]. 
The biogenic opal in the marine sediments is a 
potential paleoproductivity proxy. BSi rich 
sediments are found in all depths, latitudes, and 
climate zones of the world's oceans [8,9,10,11]. 
Based on the regional distribution variations of 
the BSi records, paleoproductivity and 
paleoclimate changes have been reconstructed 
over time, with global implications [10,12,13]. 
The global rate of biogenic silica production in 
the ocean to be between 200 and 280×1012 mol 
Si yr-1 [14]. Globally at least 50 % of the silica 
produced by diatoms in the euphotic zone 
dissolves in the upper 100 m, resulting in an 
estimated export of 100-140×1012 mol Si yr-1 to 

the deep ocean. Estimated global mean rate of 
biogenic silica production between 0.6 and 0.8 
mol Si m-2 yr-1. Biogenic silica as an indicator for 
changes in paleo-upwelling intensity.  
 
“In Arabian Sea diatoms represented over 90 % 
of the total opal microorganisms. Sediments with 
a high biogenic silica content are found along the 
margins of West Africa, Peru, and the North 
Pacific, around the Antarctic continent, and along 
the equatorial belt in the Pacific, areas where 
upwelling of nutrient-rich waters causes high 
primary production. In contrast, the northwestern 
Indian Ocean, which is one of the most 
productive regions in the world, does not show a 
high biogenic silica content in the sediments. On 
the Somali Margin, diatoms are a major 
component of the export flux from the productive 
surface layer, with biogenic silica percentages of 
up to 40% measured in sediment traps. 
However, biogenic silica content of the sediment 
is low, around 6%” [15]. Several reviewers have 
extensively examined the oceanic silicon cycle, 
most recently Treguer and De La Rocha [16]. An 
estimated 240 ± 40 Tmol Si year−1 are produced 
annually in the oceans, mainly from diatoms [14]. 
In addition to contributing 30–40% of the primary 
production occurring in the surface ocean [5], 
diatoms contribute a molar ratio of 0.13 to the 
composition of the carbon cycle in the ocean as 
well as the silicon cycle [17]. “A large fraction of 
the diatom frustules and other BSi dissolves in 
the upper water column. The rest is exported to 
the deep ocean as particles, with the majority of 
the BSi rain at 1 km reaching the ocean floor” 
[18]. Much of the BSi rain to the seabed then 
remineralizes in the upper sediments, 
transforming to silicic acid that diffuses back to 
the overlying water. It is eventually carried back 
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to the euphotic zone and re-used for new diatom 
growth. 
 
In order to understand the global biogenic factor 
cycle and the role it plays in past, present and 
future climate change, it is important to explore 
the evolution and mechanism of marine 
productivity. Changes in marine paleoproductivity 
could reflect the history of the marine biogenic 
cycle process. The present study focusses on 
southeastern Arabian Sea (SEAS) sediment 
grain size and biogenic silica content from 
marine sediment. 
 

2. MATERIALS AND METHODS  
 

2.1 Study Area 
 
The southeastern margin of the Arabian, i.e., the 
southwestern continental margin of India is the 
area selected for the study. This region lies in the 
tropical belt and experiences a humid tropical 
climate. The Western Ghats Mountain chains are 
the major physiographic feature along the coast. 
It is away from the Indus, Narmada and Tapti 

River discharges and from the major influx of 
dust plumes from the Arabian Peninsula. Even 
though no major river flows through this region, 
there are several medium and minor rivers and 
numerous streams which are not perennial in 
nature. This region is characterised by a weak 
upwelling system during the summer monsoon. It 
is seen that the upwelling along this coast begins 
during February, which is much before the onset 
of favourable southwest monsoon winds [19]. 
 

2.2 Collection and Processing of Core 
Samples 

 
The sediment core SK 215/5 was collected 
during the 25th cruise of ORV Sagar Kanya 
(December 2004) from the Southeastern Arabian 
Sea (SEAS) at 10°30.74'' N, 75°22.9'' E, about 
40 km off the Ponnani River, at a depth of 460 m. 
The core, measuring 4.2 m in length, was 
obtained using a gravity corer. Onboard, the core 
was sub-sampled at 2 cm intervals for the top 1 
m and 5 cm intervals for the remaining length. All 
sediment samples were freeze-dried, packed, 
and stored under refrigerated conditions. 

 

 
 

Fig. 1. Map showing the location of the sediment cores collected from the south eastern 
Arabian sea (labelled as SK 215/5) 
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2.3 Grain Size Analysis 
 

Sediment fractions of sand, silt, and clay were 
quantified using standard sedimentological 
methods, including wet sieving and pipette 
analysis based on Stoke’s law [20]. Sediments 
were rinsed with Milli-Q water, dried at ~50°C, 
and the <63 μm fraction was analyzed via pipette 
analysis. The percentage of silt was determined 
by subtracting the weights of clay and sand from 
the total sample weight. Duplicate samples 
yielded precision within ±3%. 
 

2.4 Biogenic Silica (BSi) Analysis 
 

Approximately 0.15 g of freeze-dried, ground 
sediment was treated with 10% H2O2 and 1 mol/L 
HCl to remove organic matter and carbonate, 
followed by centrifugation. The residue was dried 
at 60°C and treated with 2 mol/L Na2CO3 for 5 
hours at 85°C. After centrifugation, the 
supernatant was reacted with ammonium 
molybdate and ascorbic acid to form 
silicomolybdate-blue. The absorbance was 
measured at 810 nm using spectrophotometry. 
Standard Si solutions were used for calibration, 
following the modified molybdate-blue method 
[21,22]. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Sediment Grain-size 
 

The down core variations of different grain sizes 
of the sediment are shown in Fig. 2. The 
sediment mean grain size was mostly dominated 
by the very fine-grained sediments. Large sand 
fraction or medium sand grains are distributed in 

the surface layers of the sediment core. Sand 
(%) ranged from 1-13% for the last ~13.5 kyr. 
Depth profile of sand shows low contents ~2% in 
sediments deposited between ~13.5 and 8 kyr 
BP (Fig. 2) indicating less terrigenous input into 
the study area. An abrupt increasing trend of 
sand was evident around 8 kyr BP and reaches 
its maximum (13%) at ~6.4 kyr BP, suggesting 
increased terrigenous input between these time 
intervals. Sand content fluctuates between 10% 
and 2% in sediments deposited since 6.4 kyr BP 
later trend of the profile reveals that terrigenous 
input was constant during the middle and later 
part of the Holocene. Like sand, very low clay 
contents between 4% and 10% in core likely 
suggest an unchanged chemical weathering of 
continental rocks in the western part of India 
during the last ~13.5 kyr. Throughout the core, 
the dominant sedimentary fraction is silt, ranging 
from 80% to 96%. In general, the sediments of 
the Late Glacial Maximum and early Holocene 
are characterized by minimal clay and maximum 
silt, while the mid to late Holocene shows an 
increase in clay content, indicating enhanced 
detrital input. 
 

3.2 Sediment Biogenic Silica 
 
The biogenic silica content ranges from 3.4 to 
4.4% over the past 14.4 kyr (Fig. 3a). This range 
is consistent with the range (2-4%) obtained from 
a nearby core in the same study area [23]. 
Relatively high biogenic silica contents were 
observed during the B-A event (ca. 13.5-13 kyr 
BP) and low OC contents (~1.98 and ~2.7%) 
mostly occurred during the early Holocene (11.7-
8.7 kyr BP). 

 

.  
 

Fig. 2. Down-core profile of sand, silt, and clay in sediment core SK-215/GC5 
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Fig. 3. The preservation of biogenic silica in sediment core (SK 215/5) (a- Late Holocene 
period; b- Mid Holocene period; c- Early Holocene; d- Late Glacial Period) 

 

3.3 Bolling-Allerod Event (13.5-13.9 kyr 
BP) 

 
We found high biogenic silica contents (3.9-
4.5%) during the B/A event compared to the 
Holocene in the SEAS (Green shade in Fig. 3). In 
general, ISM was stronger during the warm 
climate [24], suggesting that stronger ISM seems 
to have increased upwelling and therefore 
enhanced water column productivity in the 
SEAS. Consistently, Kessarkar et al. [25] 
interpreted intense denitrification from the 
nitrogen isotope record from the eastern Arabian 
Sea, confirming a strengthened upwelling and 
intensified OMZ during the B/A event. 
 

3.4 Younger Dryas (YD; 12.9 - 11.6 kyr 
BP) 

 
An overall decreasing trend in productivity was 
recorded in biogenic silica content during the YD 
cold interval in the study area (Fig. 3). Strikingly, 
this decreasing productivity trend is punctuated 
with multi-centennial (ca. 300-500 yr) scale 
fluctuations that have not been reported from the 
entire Arabian Sea. Consistently, a decreased 
oxygen isotope ratio of foraminiferal carbonate 
(δ18OC) suggested a reduced freshwater influx 
into the SEAS during this interval [25].  

 
3.5 Early Holocene (~11.7 to 8.5 kyr BP) 
 
Our core shows low biogenic silica contents 
(<2%) in marine sediments accumulated 

between ~11.7 and 8.5 kyr BP, corresponding to 
the early Holocene interval. A period of 
intensified SW monsoon in the Arabian Sea in 
early Holocene occurred between 8 and 10 Kyr 
BP which is called the Holocene humid interval 
that could also be increased monsoonal 
precipitation on the western continental margin of 
India [26], resulting in an enormous amount of 
fresh water entering the SEAS. As a result, 
upwelling induced surface productivity was 
decreased [27]. Kessarkar et al. [28] concluded 
that a reduced primary productivity during the 
Holocene might be the effect of enhanced 
precipitation associated with the intensified SW 
monsoon fortifying near surface stratification.  
 

3.6 Holocene Climatic Optimum (HCO) 
(~8.5 to 4.5 kyr BP) 

 

A sharp increase of biogenic opal content 
between ~8.5 and 6 kyr BP corresponds to the 
HCO (Fig. 3). These results indicate increased 
water column productivity due to increased 
monsoon induced upwelling in the SEAS. It is 
interpreted that the maximum ISM rainfall during 
the Holocene mainly occurred ~8.5‒6 kyr BP. 
This is consistent with multiproxy records of 
Lunkaransar Lake (Rajasthan) which reached its 
maximum level at 6.3 kyr BP [29]. At the same 
time most of the southwest coast of India has 
been converted into carbon-rich peat land during 
the HCO [30]. The nitrogen isotopic record, a 
proxy for OMZ intensity in the Arabian Sea, 
revealed the occurrence of intense OMZ during 
the HCO [25]. The abrupt decrease in δ18Osw 

a c b c d 
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after the early Holocene inferred to indicate 
increased precipitation in the SEAS. Consistent 
to this the foraminiferal Ba/Ca record showed 
two-fold rise between 10.7 and 7.8 kyr BP 
because of higher surface runoff [31]. 
 

3.7 Late Holocene (~6 to 1.1 kyr BP) 
 
In general, biogenic silica content has stabilized 
(3.7 ± 0.4) since the ~4.5 kyr BP (Fig. 3). Trends 
of these parameters imply that paleoproductivity 
was almost stabilized in the SEAS during the      
late Holocene. Lake sediment studies from 
northwestern India also revealed that the mid to 
late Holocene period was dry and probably windy 
with weak monsoon circulation [32]. The arid 
climate and associated strong winds during the 
late Holocene likely induced strong upwelling in 
the SEAS that might have increased 
paleoproductivity in the study area (Fig. 3). 
Consistent with our productivity proxy records, 
enrichment of Mo and Cr and low Mn/Al ratio 
indicated the presence of suboxic bottom water 
since the mid-Holocene in the SEAS [33,34,35]. 
  

4. CONCLUSION 
 
We concluded that minimum clay and maximum 
silt characterize the sediments of late glacial 
maximum and early Holocene whereas, the 
maximum as and characterizes the mid and late 
Holocene, indicating enhanced detrital input. 
Biogenic opal analysis was carried out in the 
sediment core from the southeastern Arabian 
Sea. The measurement of the biogenic silica 
(BSi) content of sediments is a chemical estimate 
of the siliceous microfossil abundance. The 
concentration of opal varied with depth in the 
sediment core. Higher opal concentration was 
highest in the Late Holocene period and lowest in 
the Early Holocene Period. Thus, the results 
suggest that the productivity of the region was 
not only determined by the abundance of 
siliceous organisms, but also by other dynamic 
factors. The high opal content in the late 
Holocene period and the increasing trend of opal 
concentration towards the Glacial period 
suggests that it complies with the general view 
that the productivity of the eastern Arabian Sea 
was higher during the Last Glacial period 
compared to that in the Holocene.  
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