GREENER SYNTHESIS AND CHARACTERIZATION OF THE SELENIUM NANOPARTICLES FROM Acacia catechu

SOMAJI SHANKAR ANUSE

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.

V. SUMATHI *

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.

C. UMA

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.

D. SANGEETHA

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.

P. SIVAGURUNATHAN

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar-608002, Tamil Nadu, India.

D. J. MUKESH KUMAR

Centre of Material Engineering and Regenerative Medicine, Bharath Institute of Science and Technology, BIHER, Selaiyur, Chennai-600073, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Abstract

Selenium is an important trace element for human health. Organic and inorganic selenium have different biological and physicochemical properties than selenium nanoparticles. We hoped to synthesize selenium nanoparticles from Acacia catechu extract. Synthesized nanoparticles are used for flavonoids, phenolic compounds, lowering sugar tests, etc. The Fourier Transform Infrared spectra are used to detect the reduced and stabilized functional groups of metabolites in an acacia bark extract and their likely role in selenium nanoparticle formation. The color change indicates biological sodium selenite reduction by Acacia catechu extract. Antioxidant properties of selenium nanoparticles are tested using 2,2 diphenyl 1 picrylhydrazyl, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and lipid peroxide radical scavenging action. Our results show that manufactured selenium nanoparticles boost antioxidant activity. Selenium nanoparticles are effective radical scavengers that could be used in food and medicine.

Keywords: Phytochemical activity, antioxidant activity, Acacia catechu, selenium nanoparticles


How to Cite

ANUSE, S. S., SUMATHI, V., UMA, C., SANGEETHA, D., SIVAGURUNATHAN, P., & KUMAR, D. J. M. (2022). GREENER SYNTHESIS AND CHARACTERIZATION OF THE SELENIUM NANOPARTICLES FROM Acacia catechu. UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(24), 58–71. https://doi.org/10.56557/upjoz/2022/v43i243286

Downloads

Download data is not yet available.

References

Oktaviani O. Nanoparticles: properties, applications and toxicities. J Latihan. 2021;1(2):11-20.

Zhang Y, Roh YJ, Han SJ, Park I, Lee HM, Ok YS et al. Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants (Basel). 2020;9(5):383.

DOI: 10.3390/antiox9050383, PMID 32380763.

Hariharan S, Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020;28(3):667-95.

DOI: 10.1007/s10787-020-00690-x, PMID 32144521.

Kuršvietienė L, Mongirdienė A, Bernatonienė J, Šulinskienė J, Stanevičienė I. Selenium anticancer properties and impact on cellular redox status. Antioxidants. 2020;9(1):80.

DOI: 10.3390/antiox9010080

Ostróżka-Cieślik A, Dolińska B, Ryszka F. Therapeutic potential of selenium as a component of preservation solutions for kidney transplantation. Molecules. 2020;25(16):3592.

DOI: 10.3390/molecules25163592, PMID 32784639.

Zhai X, Zhang C, Zhao G, Stoll S, Ren F, Leng X. Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J Nanobiotechnology. 2017 Dec;15(1):4.

DOI: 10.1186/s12951-016-0243-4, PMID 28056992.

Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q et al. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomedicine. 2018;13:2107-28.

DOI: 10.2147/IJN.S157541, PMID 29692609.

Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology. 2022;20(1):1.

Kondaparthi P, Flora SJ, Naqvi S. Selenium nanoparticles: an insight on its Pro-oxidant and antioxidant properties. Front. Nanosci Nanotechnol. 2019;6:1-5.

Deepa T, Mohan S, Manimaran P. A crucial role of selenium nanoparticles for future perspectives. Results Chem. 2022;4:100367.

DOI: 10.1016/j.rechem.2022.100367

Cao B, Yang Y, Yue C, Wang Y, Fu P, Bi Y. Preparation, characteristics, and antioxidant activity of the selenium nanoparticles stabilized by polysaccharides isolated from Grateloupia filicina. Pharmacogn Mag. 2020 Jul 1;16(71):543.

DOI: 10.4103/pm.pm_405_19

Mellinas C, Jiménez A, Garrigós MDC. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. Bean Shell extract. Molecules. 2019;24(22).

DOI: 10.3390/molecules24224048, PMID 31717413.

Singh A, Gautam PK, Verma A, Singh V, Shivapriya PM, Shivalkar S, et al. Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A review. Biotechnol Rep (Amst). 2020;25:e00427.

DOI: 10.1016/j.btre.2020.e00427, PMID 32055457.

Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021; 20(2):101-24.

DOI: 10.1038/s41573-020-0090-8, PMID 33277608.

Ikram M, Javed B, Raja NI, Mashwani ZU. Biomedical potential of plant-based selenium nanoparticles: A comprehensive review on therapeutic and mechanistic aspects. Int J Nanomedicine. 2021;16:249-68.

DOI: 10.2147/IJN.S295053, PMID 33469285.

Karki R, Bajgai AK, Khadka N, Thapa O, Mukhiya T, Oli HB, et al. Acacia catechu Bark alkaloids as Novel Green Inhibitors for Mild steel Corrosion in a one molar H2SO4 Solution. Electrochem. 2022;3(4):668-87.

DOI: 10.3390/electrochem3040044

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin- phenol reagent. J Biol Chem. 1951;193(1): 265-75.

DOI: 10.1016/S0021-9258(19)52451-6, PMID 14907713.

Hedge JE, Hofreiter BT. Carbohydr Chem. 1962;17.

Zak B, Zlatkins A, Boyle. A new method for the determination of serum cholesterol. J Lab Clin Med. 1953;14:486.

McDonald S, Prenzler PD, Antolovich M, Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73(1):73-84.

DOI: 10.1016/S0308-8146(00)00288-0

In SS. Methods in food analysis. New York: Academic Press. 1970;70.

Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002;10:178-82.

Selvakumar S, Vimalanban S, Balakrishnan G. Quantitative determination of phytochemical constituents from Anisomeles malabarica. MOJ Bioequivalence Bioavailability. 2019;6(1): 19-21.

Prieto P, Pineda M, Aguilar M. Spectrophotometric quantification of antioxidant capacity through the formation of a phosohomolybdenum complex: Specific application to the determination of vitamin E. Anal Biochem. 1999;269(2):337-41.

DOI: 10.1006/abio.1999.4019, PMID 10222007.

Oyaizu M. Studies on product of browning reaction prepared from glucose amine. Jap. J Nutr. 1986;44:307-15.

Hedge JE, Hofreiter BT. Carbohydr Chem. 1962;17.

Koleva II, Van Beek TA, Linssen JPH, de Groot A, Evstatieva LN. Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal. 2002;13(1):8-17.

DOI: 10.1002/pca.611, PMID 11899609.

González-Palma I, Escalona-Buendía HB, Ponce-Alquicira E, Téllez-Téllez M, Gupta VK, Díaz-Godínez G et al. Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Front Microbiol. 2016;7:1099.

DOI: 10.3389/fmicb.2016.01099, PMID 27462314.

Pant DR, Pant ND, Saru DB, Yadav UN, Khanal DP. Phytochemical screening and study of antioxidant, antimicrobial, antidiabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol. 2017;6(2):170-6.

DOI: 10.5455/jice.20170403094055, PMID 28512598.

Krishna PG, Chandra Mishra P, Naika MM, Gadewar M, Ananthaswamy PP, Rao S, et al. Photocatalytic activity induced by metal nanoparticles synthesized by sustainable approaches: A comprehensive review. Front Chem. 2022;10:917831.

DOI: 10.3389/fchem.2022.917831, PMID 36118313.

Ramamurthy CH, Padma M, samadanam ID, Mareeswaran R, Suyavaran A, Kumar MS et al. The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids Surf B Biointerfaces. 2013 Feb 1;102:808-15.

DOI: 10.1016/j.colsurfb.2012.09.025, PMID 23107960.

Kannan S, Mohanraj K, Prabhu K, Barathan S, Sivakumar G. Synthesis of selenium nanorods with assistance of biomolecule. Bull Mater Sci. 2014 Dec;37(7):1631-5.

DOI: 10.1007/s12034-014-0712-z

Coccia F, Tonucci L, Bosco D, Bressan M, d’Alessandro N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 2012; 14(4):1073-8.

DOI: 10.1039/c2gc16524d

Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101(20): 7958-65.

DOI: 10.1016/j.biortech.2010.05.051, PMID 20541399.

Zook JM, Maccuspie RI, Locascio LE, Halter MD, Elliott JT. Stable nanoparticle aggregates/ agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology. 2011;5(4):517-30.

DOI: 10.3109/17435390.2010.536615, PMID 21142841.

Bantz C, Koshkina O, Lang T, Galla HJ, Kirkpatrick CJ, Stauber RH, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5:1774-86.

DOI: 10.3762/bjnano.5.188, PMID 25383289.

Kora AJ. Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: a renewable nanofactory for the synthesis of selenium nanoparticles. Bioresour Bioprocess. 2018;5(1):1-12.

DOI: 10.1186/s40643-018-0217-5

Molyneux P. The use of the stable free radical di phenyl picryl hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J Sci Technol. 2004;26(2):211-9.

Li Y, Li X, Wong YS, Chen T, Zhang H, Liu C, et al. The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials. 2011;32(34):9068-76.

DOI: 10.1016/j.biomaterials.2011.08.001, PMID 21864903.