PURIFICATION AND CHARACTERIZATION OF ANTI-BACTERIAL BACTERIOCIN ISOLATED FROM HOSPITAL ACQUIRED MULTI DRUG RESISTANT Staphylococcus aureus

PDF

Published: 2022-12-28

DOI: 10.56557/upjoz/2022/v43i243324

Page: 288-306


K. BHARATHI BAI

Department of Microbiology, Dr. N.G.P Arts and Science College, Coimbatore, Tamil Nadu, India.

S. S. SUDHA *

Department of Microbiology, Dr. N.G.P Arts and Science College, Coimbatore, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Abstract

Concerns for public health have been raised all over the world as a result of a significant increase in bacterial resistance to the antibiotics that are currently available. As a result, antimicrobial peptides (AMPs) have emerged as a promisingly novel class of infectious disease treatment options. The current study focuses on the isolation and purification of a bacteriocin from clinically Multi-Drug Resistant Staphylococcus aureus (HA MRSA_1) that was acquired in a hospital including characterization. The ribosomally synthesized peptides have significant potential as an anti-bacterial peptide, and it was demonstrated that the bacteriocin has strong antagonistic activity against many pathogenic organisms. Ammonium sulfate precipitation, dialysis, Gel filtration chromatography, RP-HPLC, and SDS-PAGE were the initial methods used to purify it. A combination of LCMS analysis and Mass matrix-assisted laser desorption/ionization-mass spectrometry (MALDI TOF/MS) was used. The physio-chemical characterization of purified bacteriocin was studied using FT-IR, and XRD. The LCMS analysis of the RP-HPLC-collected active component revealed the amino acid sequence of the purified peptide (bacteriocin). After being subjected to high-performance liquid chromatography, a peak was discovered with a retention time of 5.330 minutes. The amino acid of bacteriocin was identified by LCMS, and the query sequence shared a match with the Staphylococcus aureus protein. In-silico molecular docking study investigated the significant evidence for the role of bacteriocin identified from Multi-Drug Resistant Staphylococcus aureus as an anti-bacterial agent. In conclusion, the bacteriocin found in this study may be a promising agent that should be further investigated for it’s cytotoxicity and in-vivo anti-bacterial activity in the future.

Keywords: Bacteriocin, hospital acquired multi drug resistant staphylococcus aureus, gel filtration chromatography, RP-HPLC, molecular docking, purification


How to Cite

BAI, K. B., & SUDHA, S. S. (2022). PURIFICATION AND CHARACTERIZATION OF ANTI-BACTERIAL BACTERIOCIN ISOLATED FROM HOSPITAL ACQUIRED MULTI DRUG RESISTANT Staphylococcus aureus. UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(24), 288–306. https://doi.org/10.56557/upjoz/2022/v43i243324

Downloads

Download data is not yet available.

References

Stapleton PD, Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog. 2002; 85(1):57-72.

DOI: 10.3184/003685002783238870

Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9): 2671.

DOI: 10.3390/molecules26092671

Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H et al. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev. 2021;45(1):fuaa039.

DOI: 10.1093/femsre/fuaa039.

Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M et al. Bacteriocins: properties and potential use as antimicrobials. J Clin Lab Anal. 2022;36(1):e24093.

DOI: 10.1002/jcla.24093.

Negash AW, Tsehai BA. Current applications of bacteriocin. Int J Microbiol. 2020;2020:4374891.

DOI: 10.1155/2020/4374891.

Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012;78(1):1-6.

DOI: 10.1128/AEM.05576-11.

Todorov SD, Kang HJ, Ivanova IV, Holzapfel WH. Bacteriocins from LAB and other alternative approaches for the control of clostridium and Clostridiodes related gastrointestinal colitis. Front Bioeng Biotechnol. 2020;8:581778.

DOI: 10.3389/fbioe.2020.581778.

Benítez-Chao DF, León-Buitimea A, Lerma-Escalera JA, Morones-Ramírez JR. Bacteriocins: an overview of antimicrobial, toxicity, and biosafety assessment by In vivo models. Front Microbiol. 2021;12: 630695.

DOI: 10.3389/fmicb.2021.630695

Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 2006;70(2):564-82.

DOI: 10.1128/MMBR.00016-05,

Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol. 2015;6:242.

DOI: 10.3389/fmicb.2015.00242, PMID 25873913.

Murray PR. The clinician and the Microbiology Laboratory. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 2015;191-223.

DOI: 10.1016/B978-1-4557-4801-3.00016-3.

Farghali HA, AbdElKader NA, AbuBakr HO, Aljuaydi SH, Khattab MS, Elhelw R et al. Antimicrobial action of autologous platelet-rich plasma on MRSA-infected skin wounds in dogs. Sci Rep. 2019;9(1):12722.

DOI: 10.1038/s41598-019-48657-5.

Macaluso G, Fiorenza G, Gaglio R, Mancuso I, Scatassa ML. In vitro evaluation of bacteriocin-like inhibitory substances Produced by Lactic Acid Bacteria Isolated During Traditional Sicilian Cheese Making. Ital J Food Saf. 2016;5(1):5503.

DOI: 10.4081/ijfs.2016.5503.

Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761-4.

DOI: 10.1128/JCM.01228-07

Aunpad R, Na-Bangchang K, Pipatsatitpong D. Bacteriocins with anti-MRSA activity produced by water and soil isolated bacteria. Ann Microbiol. 2007;57(1):9-14.

DOI: 10.1007/BF03175043.

Wingfield P. Protein precipitation using ammonium sulfate. Current protocols in protein science; 2001, Appendix 3, Appendix-3f.

Cheng M, Gong SG, Lévesque CM. Rapid isolation and purification of secreted bacteriocins from Streptococcus mutans and other lactic acid bacteria. Bio Protoc. 2020;10(22):e3824.

DOI: 10.21769/BioProtoc.3824

Saavedra L, Castellano P, Sesma F. Purification of bacteriocins produced by lactic acid bacteria. Methods Mol Biol. 2004;268:331-6.

DOI: 10.1385/1-59259-766-1:331

Zhang J, Yang Y, Yang H, Bu Y, Yi H, Zhang L et al. Purification and partial characterization of bacteriocin lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from Chinese traditional fermented milk. Front Microbiol. 2018;9:2165.

DOI: 10.3389/fmicb.2018.02165

Trejo-González L, Gutiérrez-Carrillo AE, Rodríguez-Hernández AI, Del Rocío López-Cuellar M, Chavarría-Hernández N. Bacteriocins Produced by LAB Isolated from Cheeses within the Period 2009-2021: a Review. Probiotics Antimicrob Proteins. 2022;14(2):238-51 [a review].

DOI: 10.1007/s12602-021-09825-0

Yamamoto Y, Togawa Y, Shimosaka M, Okazaki M. Purification and characterization of a novel bacteriocin produced by Enterococcus faecalis strain RJ-11. Appl Environ Microbiol. 2003;69(10):5746-53.

DOI: 10.1128/AEM.69.10.5546-5553.2003

Sreeramulu G, Singh NK. Destaining of Coomassie brilliant blue R-250-stained polyacrylamide gels with sodium chloride solutions. Electrophoresis. 1995 Mar;16(3):362-5.

DOI: 10.1002/elps.1150160162

Iyapparaj P, Maruthiah T, Ramasubburayan R, Prakash S, Kumar C, Immanuel G et al. Optimization of bacteriocin production by Lactobacillus sp. MSU3IR against shrimp bacterial pathogens. Aquat Biosyst. 2013;9(1):12.

DOI: 10.1186/2046-9063-9-12

Batdorj B, Dalgalarrondo M, Choiset Y, Pedroche J, Métro F, Prévost H et al.Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol. 2006;101(4):837-48.

DOI: 10.1111/j.1365-2672.2006.02966.x

Leversee JA, Glatz BA. Detection of the bacteriocin propionicin PLG-1 with polyvalent anti-PLG-1 antiserum. Appl Environ Microbiol. 2001;67(5):2235-9.

DOI: 10.1128/AEM.67.5.2235-2239.2001

Hockett KL, Baltrus DA. Use of the soft-agar overlay technique to screen for bacterially produced inhibitory compounds. J Vis Exp. 2017;119(119):55064.

DOI: 10.3791/55064

Castellano P, Vignolo G, Farías RN, Arrondo JL, Chehín R. Molecular view by fourier transform infrared spectroscopy of the relationship between lactocin 705 and membranes: speculations on antimicrobial mechanism. Appl Environ Microbiol. 2007;73(2):415-20.

DOI: 10.1128/AEM.01293-06

Goh HF, Philip K. Purification and characterization of bacteriocin Produced by Weissella confusa A3 of Dairy Origin. PLOS ONE. 2015;10(10):e0140434.

DOI: 10.1371/journal.pone.0140434

Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat. 2010;4(4):1797-823.

DOI: 10.1214/10-AOAS341

Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2014 Jan 1;944:166-74.

DOI: 10.1016/j.jchromb.2013.11.017.

Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR et al. Plant antimicrobial peptides: state of the art, in silico prediction and perspectives in the omics era. Bioinformatics Biol Insights. 2020;14:1177932220952739.

DOI: 10.1177/1177932220952739

Fujita K, Ichimasa S, Zendo T, Koga S, Yoneyama F, Nakayama J et al. Structural analysis and characterization of lacticin Q, a novel bacteriocin belonging to a new family of unmodified bacteriocins of gram-positive bacteria. Appl Environ Microbiol. 2007; 73(9):2871-7.

DOI: 10.1128/AEM.02286-06

Li Q, Peng W, Ou Y. Prediction and analysis of key protein structures of 2019-nCoV. Future Virol. 2020 Apr;15(6):349-57.

DOI: 10.2217/fvl-2020-0020

Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41(Web Server issue):W349-57.

DOI: 10.1093/nar/gkt381

Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server issue);Web Server Issue:W363-7.

DOI: 10.1093/nar/gki481

Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ. FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue);Web Server Issue:W229-32.

DOI: 10.1093/nar/gkn186

Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 2021;30(1):70-82.

DOI: 10.1002/pro.3943

Marshall SH, Arenas G. Antimicrobial peptides: a natural alternative to chemical antibiotics and a potential for applied biotechnology. Electron J Biotechnol. 2003;6(3):96-109.

DOI: 10.2225/vol6-issue3-fulltext-1.

Fahim HA, Khairalla AS, El-Gendy AO. Nanotechnology: a valuable strategy to improve bacteriocin formulations. Front Microbiol. 2016;7:1385.

DOI: 10.3389/fmicb.2016.01385

Bonhi KLR, Imran S. Role of bacteriocin in tackling the global problem of multi-drug resistance: an updated review. Biosci Biotech Res Comm. 2019;12(3):601-8.

DOI: 10.21786/bbrc/12.3/8.

Piper C, Cotter PD, Ross RP, Hill C. Discovery of medically significant lantibiotics. Curr Drug Discov Technol. 2009;6(1):1-18.

DOI: 10.2174/157016309787581075

Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870):389-95.

DOI: 10.1038/415389a

Tossi A, Sandri L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr Pharm Des. 2002;8(9):743-61.

DOI: 10.2174/1381612023395475

Arnett E, Seveau S. The multifaceted activities of mammalian defensins. Curr Pharm Des. 2011;17(38):4254-69.

DOI: 10.2174/138161211798999348

Lei S, Zhao R, Sun J, Ran J, Ruan X, Zhu Y. Partial purification and characterization of a broad-spectrum bacteriocin produced by a Lactobacillus plantarum zrx03 isolated from infant’s feces. Food Sci Nutr. 2020;8(5):2214-22.

DOI: 10.1002/fsn3.1428

Hassan MU, Nayab H, Rehman TU, Williamson MP, Haq KU, Shafi N et al. Characterisation of bacteriocins Produced by Lactobacillus spp. Isolated from the Traditional Pakistani Yoghurt and Their Antimicrobial Activity against Common Foodborne Pathogens. BioMed Res Int. 2020;2020:8281623.

DOI: 10.1155/2020/8281623

Afrin S, Hoque MA, Sarker AK, Satter MA, Bhuiyan MNI. Characterization and profiling of bacteriocin-like substances produced by lactic acid bacteria from cheese samples. Access Microbiol. 2021;3(6):000234.

DOI: 10.1099/acmi.0.000234

Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A. 2004;101(26):9528-33.

DOI: 10.1073/pnas.0402700101

Manukumar HM, Umesha S. MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci Rep. 2017;7(1):11414.

DOI: 10.1038/s41598-017-11597-z

Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VGJ. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015 Jul;28(3):603-61.

DOI: 10.1128/CMR.00134-14

Donker GA, Deurenberg RH, Driessen C, Sebastian S, Nys S, Stobberingh EE. The population structure of Staphylococcus aureus among general practice patients from the Netherlands. Clin Microbiol Infect. 2009;15(2):137-43.

DOI: 10.1111/j.1469-0691.2008.02662.x, PMID 19178545

Efstratiou A, Ongerth JE, Karanis P. Waterborne transmission of protozoan parasites: review of worldwide outbreaks - an update 2011-2016. Water Res. 2017;114:14-22.

DOI: 10.1016/j.watres.2017.01.036

Den Heijer CD, van Bijnen EM, Paget WJ, Pringle M, Goossens H, Bruggeman CA et al. Prevalence and resistance of commensal Staphylococcus aureus, including meticillin-resistant S aureus, in nine European countries: a cross-sectional study. Lancet Infect Dis. 2013;13(5):409-15.

DOI: 10.1016/S1473-3099(13)70036-7

Fishovitz J, Hermoso JA, Chang M, Mobashery S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. IUBMB Life. 2014;66(8):572-7.

DOI: 10.1002/iub.1289

Morrison JM, Anderson KL, Beenken KE, Smeltzer MS, Dunman PM. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells. Front Cell Infect Microbiol. 2012 Mar 8;2:26.

DOI: 10.3389/fcimb.2012.00026

Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014; 2014:147648.

DOI: 10.1155/2014/147648

Bonnet M, Lagier JC, Raoult D, Khelaifia S. Bacterial culture through selective and non-selective conditions: the evolution of culture media in clinical microbiology. New Microbes New Infect. 2020;34:100622.

DOI: 10.1016/j.nmni.2019.100622

Zalewska M, Churey JJ, Worobo RW, Milewski S, Szweda P. Isolation of bacteriocin-producing Staphylococcus spp. Strains from human skin wounds, soft tissue infections and bovine mastitis. Pol J Microbiol. 2018;67(2): 163-9.

DOI: 10.21307/pjm-2018-018

Sugai M, Fujiwara T, Akiyama T, Ohara M, Komatsuzawa H, Inoue S, et al. Purification and molecular characterization of glycylglycine endopeptidase produced by Staphylococcus capitis EPK1. J Bacteriol. 1997;179(4):1193-202.

DOI: 10.1128/jb.179.4.1193-1202.1997

Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Factories. 2014;13(Suppl 1);Suppl 1;Suppl 1(Suppl 1), S3:S3.

DOI: 10.1186/1475-2859-13-S1-S3

Perez RH, Zendo T, Sonomoto K. Circular and leaderless bacteriocins: biosynthesis, mode of action, applications, and prospects. Front Microbiol. 2018;9:2085.

DOI: 10.3389/fmicb.2018.02085