Probiotics for Sustainable Development in Aquaculture: A Review

PDF

Published: 2023-06-23

DOI: 10.56557/upjoz/2023/v44i123534

Page: 34-46


Priyam Sarmah *

Department of Zoology, Gauhati University, Guwahati-14, Assam, India.

Sagarika Sarma

Department of Microbiology, Gauhati University, Guwahati-14, Assam, India.

*Author to whom correspondence should be addressed.


Abstract

The ability of probiotics to enhance fish health, development, and production in freshwater fish farms in a sustainable and environmentally friendly way is examined in this research. Antibiotics and other chemicals have traditionally been used in aquaculture as a means of disease control and fish health maintenance. Antibiotic overuse, however, has the potential to harm both the environment and human health. Antibiotics that support fish health and growth can be replaced by probiotics, which are chemical-free and sustainable. Probiotics can improve fish immune function, lessen the frequency of disease outbreaks, improve feed conversion efficiency, and lessen the environmental effect of fish farming, according to studies. Probiotics can also enhance water quality by lowering levels of dangerous bacteria and diseases, which could result in a more environmentally responsible and long-lasting aquaculture system. The findings imply that by improving digestion, feed conversion, and general fish health, probiotics have a significant potential to support the sustainability and health of freshwater fish farms. To fully explore the potential of probiotics in the fishing sector, more research is required in this area.

Keywords: Fish health, antibiotics aquaculture, sustainable, disease management, feed conversion efficiency


How to Cite

Sarmah , P., & Sarma , S. (2023). Probiotics for Sustainable Development in Aquaculture: A Review. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(12), 34–46. https://doi.org/10.56557/upjoz/2023/v44i123534

Downloads

Download data is not yet available.

References

Hai NV, Chaklader MR. Probiotics in aquaculture: A promising sustainable approach for fish health management. Rev Aquacult. 2021;13(1):447-64.

Merrifield DL, Dimitroglou A, Bradley G, Baker RT, Davies SJ, Carrick C. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquaculture. 2010;302(1-2):1-18.

Kord MI, Maulu S, Srour TM, Omar EA, Farag AA, Nour AAM, et al. Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile tilapia fingerlings under a zero-water-exchange system. Aquaculture. 2022;547:737503.

Available:https://doi.org/10.1016/j.aquaculture.2021.737503

Lefebvre M, Paillard C, McKenna P. Environmental impacts of freshwater aquaculture: A review. Aquacult Int. 2019;27(6):1627-52. DOI: 10.1007/s10499- 019-00388-7

Mavraganis T, Constantina C, Kolygas M, Vidalis K, Nathanailides C. Environmental issues of aquaculture development. Egypt J Aquat Biol Fish. 2020;24(2): 441-50.

Available:https://doi.org/10.21608/ejabf.2020.94059

Mavraganis T, Thorarensen H, Tsoumani M, Nathanailides C. On the environmental impact of freshwater fish farms in Greece and in Iceland. Annu Res Rev Biol. 2017;13(1):1-7.

Available:https://doi.org/10.9734/ARRB/2017/32492

Merrifield DL, Carnevali O. Probiotic modulation of the gut microbiota of fish. In: Aquaculture nutrition: gut health, probiotics and prebiotics. Hoboken, NJ: Wiley. 2014;185-222.

Mohammadi G, Rafiee G, Tavabe KR, Abdel-Latif HMR, Dawood MAO. The enrichment of diet with beneficial bacteria (single- or multi-strain) in biofloc system enhanced the water quality, growth performance, immune responses, and disease resistance of Nile tilapia (Oreochromis niloticus). Aquaculture. 2021;539:736640.

Vazquez Silva G, Ramirez Saad H, Aguirre Garrido J, Mayorga Reyes L, Azaola Espinosa A, Morales Jimenez J. Effect of bacterial probiotics bio-encapsulated into artemia franciscana on weight and length of the shortfin silverside (Chirostoma humboldtianum), and PCR-DGGE characterization of its intestinal bacterial community. Lat Am J Aquat Res. 2017; 45(5):1031-43.

Moriarty DJW. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture. 1998;164(1-4):351-8.

Soltani M, Ghosh K, Hoseinifar SH, Kumar V, Lymbery AJ, Roy S, et al. Genus bacillus , promising probiotics in Aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aquac. 2019;27(3):331-79.

Azevedo PA, Cho CY, Leeson S, Bureau DP. Effects of feeding level and water temperature on growth, nutrient and energy utilization and waste outputs of rainbow trout (Oncorhynchus mykiss). Aquat Living Resour. 1998;11(4):227-38.

Azimirad M, Meshkini S, Ahmadifard N, Hoseinifar SH. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish Shellfish Immunol. 2016;54: 516-22.

Begum N, Islam M, Haque A, Suravi I. Growth and yield of monosex tilapia Oreochromis niloticus in floating cages fed commercial diet supplemented with probiotics in freshwater pond, Sylhet. Bangladesh J Zool. 2017;45(1):27-36.

Brett JR. Environmental factors and growth. In: Hoar WS, Randall DJ, Brett JR, editors. Bioenergetics and Growth. New York: Academic Press. 1979;8:599-675.

Carnevali O, De Vivo L, Sulpizio R, Gioacchini G, Olivotto I, Silvi S et al. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF‐I, myostatin and cortisol gene expression. Aquaculture. 2006; 258(1-4):430-8.

Nathanailides C, Tsoumani M, Kakali F, Logothetis P, Beza P, Mayraganis T, et al. A correlation between alkaline phosphatase and phosphate levels with the biomass of trout farm effluents. In: Proceedings of the VI international conference water & fish. Zemun, Serbia: Faculty of Agriculture. 2015;170-5.

Panteli N, Mastoraki M, Lazarina M, Chatzifotis S, Mente E, Kormas KA, et al. Configuration of gut microbiota structure and potential functionality in two teleosts under the influence of dietary insect meals. Microorganisms. 2021;9(4):699.

Paray BA, El-Basuini MF, Alagawany M, Albeshr MF, Farah MA, Dawood MAO. Yucca schidigera Usage for Healthy Aquatic Animals: Potential Roles for Sustainability. Animals (Basel). 2021; 11(1):93.

Available:https://doi.org/10.3390/ani11010093

Penn MH, Bendiksen EÅ, Campbell P, Krogdahl Å. High level of dietary pea protein concentrate induces enteropathy in Atlantic salmon (Salmo salar L.). Aquaculture. 2011;310(3-4):267-73.

Available:https://doi.org/10.1016/j.aquaculture.2010.10.006

Putra AN, Mustahal M, Syamsunarno MB, Hermawan D, Fatimah DG, Putri PB, et al. Dietary Bacillus NP5 supplement impacts on growth, nutrient digestibility, immune response, and resistance to Aeromonas hydrophila infection of African catfish, Clarias gariepinus. Biodivers J Biol Divers. 2021;22(1):253-61.

Available:https://doi.org/10.13057/biodiv/d220131

Ring ø E, Hoseinifar SH, Ghosh K, Van Doan H. Modulation of the immune system of fish by probiotics. Rev Aquacult. 2010;2(1):1-14. Available:https://doi.org/10.1111/j.1753-5131.2010.01015.x

Rurangwa E, Verdegem MCJ. Microorganisms in recirculating aquaculture systems and their management. Rev Aquacult. 2015; 7(2):117-30. Available:https://doi.org/10.1111/raq.12083

Sakai M, Yoshida T, Atsuta S, Kobayashi M. Enhancement of resistance to vibriosis in rainbow trout, Oncorhynchus mykiss (Walbaum), by oral administration of Clostridium butyricum bacterin. J Fish Diseases. 1995;18(2):187-90. Available:https://doi.org/10.1111/j.1365-2761.1995.tb00309.x

Gong W, Gao S, Zhu Y, Wang G, Zhang K, Li Z, et al. Effect of the aerobic denitrifying bacterium Pseudomonas furukawaii ZS1 on microbiota Compositions in Grass Carp Culture Water. Water. 2021 15 of 15;13(10):1329.

Sayed Hassani MHS, Jourdehi AY, Zelti AH, Masouleh AS, Lakani FB. Effects of commercial superzist probiotic on growth performance and hematological and immune indices in fingerlings Acipenser baerii. Aquacult Int. 2020;28(1):377-87.

Iribarren D, Dagá P, Moreira MT, Feijoo G. Potential environmental effects of probiotics used in aquaculture. Aquacult Int. 2012;20(4):779-89. Available:https://doi.org/10.1007/s10499-012-9536-4

Islam SMM, Rohani MF, Shahjahan M. Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquacult Rep. 2021;21:100800.

Available:https://doi.org/10.1016/j.aqrep.2021.100800

Jafaryan H, Taati MM, Jafarzadeh M. The enhancement of growth parameters in common carp (Cyprinus carpio) larvae using probiotic in rearing tanks and feeding by various artemia nauplii. Aquac Aquar Conserv Legis. 2011;4:511-8.

Jahangiri L, Esteban MÁ. Administration of probiotics in the water in finfish aquaculture systems: A review. Fishes. 2018;3(3):33. Available:https://doi.org/10.3390/fishes3030033

Kaushik SJ, Oliva-Teles A. Effect of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture. 1985;50(1-2):8486(85)90044-7:89-101. Available:https://doi.org/10.1016/0044- 8486(85)90044-7

Kopp M, Weber C. Microbial interactions in aquaculture: current knowledge and future challenges. Aquaculture. 2019;500:431-8. DOI: 10.1016/j.aquaculture.2018.09.042

FAO. Antibiotic resistance in aquaculture. Food and Agriculture Organization of the United Nations; 2018.

FAO. 2018-meeting the sustainable development goals. State World Fish Aquacult; 2018.

Sealey WM, Conley ZB, Bensley M. Prebiotic supplementation has only minimal effects on growth efficiency, intestinal health and disease resistance of westslope cutthroat trout Oncorhynchus clarkii lewisi fed 30% soybean meal. Front Immunol. 2015;6:396.

Segner H, Sundh H, Buchmann K, Douxfils J, Sundell KS, Mathieu C, et al. Health of farmed fish: Its relation to fish welfare and its utility as welfare indicator. Fish Physiol Biochem. 2012;38(1):85-105.

Available:https://doi.org/10.1007/s10695-011-9562-4

Shafique L, Abdel-Latif HMR, Hassan FU, Alagawany M, Naiel MAE, Dawood MAO, et al. The feasibility of using yellow mealworms (Tenebrio molitor): Towards a sustainable aquafeed industry. Animals (Basel). 2021;11(3):811.

Available:https://doi.org/10.3390/ani11030811

Sharma GK, Thakur A. Bioremediation of farm ponds for improving water quality and fish productivity in Bastar Plateau. Adv Biol Res. 2018;9:81-5.

Tahar A, Kennedy A, Fitzgerald RD, Clifford E, Rowan N. Full water quality monitoring of a traditional flow-through rainbow trout farm. Fishes. 2018;3(3): 28.

Available:https://doi.org/10.3390/fishes3030028

Tang J-Y, Dai Y-X, Li Y-M, Qin J-G, Wang Y. Can application of commercial microbial products improve fish growth and water quality in freshwater polyculture? N Am J Aquacult. 2016;78(2):154-60.

Available:https://doi.org/10.1080/15222055.2016.1149401

Irianto A, Austin B. Probiotics in aquaculture. J Fish Diseases. 2002;25(11): 633-42. DOI: 10.1046/j.1365-2761.2002.00422.x

Carr OJ, Goulder R. Fish-farm effluents in rivers—I. effects on bacterial populations and alkaline phosphatase activity. Water Res. 1990;24(5):631-8.

Cruz PM, Ibáñez AL, Hermosillo OAM, Saad HCR. Use of probiotics in aquaculture. ISRN Microbiol. 2012;2012: 1-13.

Ebrahimi G, Marzban M, Dehghani M. Effects of dietary supplementation with probiotic (Bacillus subtilis) on growth performance, digestive enzyme activity and gut microbiota of common carp (Cyprinus carpio). Aquacult Rep. 2020; 16:100283. DOI: 10.1016/j.aqrep.2019.100283

Gao X, Zhang Y, Wang L, Song C. Effects of probiotics on water quality and microbial community in recirculating aquaculture system. Aquacult Int. 2021;29(5):1601-16.

DOI: 10.1007/s10499-021-00715-y

Munoz-Atienza E, Gomez-Sala B, Araujo C, Campanero C, del Campo R, Hernandez PE, et al. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013;13(1): 1-10.

Muñoz-Atienza E, Gómez-Sala B, Araújo C, Campanero C, Del Campo R, Hernández PE, et al. Antimicrobial activity, antibiotic susceptibility and virulence factors of lactic acid bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiol. 2013;13(1): 15. DOI: 10.1186/1471-2180-13-15, PMID 23347637.

Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000;64(4):655-71. DOI: 10.1128/MMBR.64.4.655-671.2000, PMID 11104813.

FAO/WHO. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United Nations, World Health Organization; 2001.

Metchnikoff E. The prolongation of life. New York: Putnam; 1908. Mohammadi G, Adorian TJ, Rafiee G. Beneficial effects of Bacillus subtilis on water quality, growth, immune responses, endotoxemia and protection against lipopolysaccharide-induced damages in Oreochromis niloticus under biofloc technology system. Aquacult Nutr. 2020;26(5):1476-92.

Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD. Probiotic use in at-risk populations. J Am Pharm Assoc. 2013;53(5):519-28. Available:https://doi.org/10.1331/JAPhA.2013.13122

Ring ø, E, Hoseinifar Aquacult Res SJ, Lauzon, HL Probiotics in aquaculture: Challenges and outlook. 2010;41(5):622-33. Available:https://doi.org/10.1111/j.1365-2109.2010.02519.x

Ringo E, Olsen RE, Mayhew TM, Myklebust R, Krogdahl Å. An overview of the immune system of fish. Fish Physiol. 2016;35. Available:https://doi.org/10.1016/B978-0-12-802728-8.00001-8

Johansson LH, Mikkelsen H, Larsen R, Gram L. A comparative study of the immunomodulatory effects of the probiotic Lactobacillus rhamnosus in rainbow trout (Oncorhynchus mykiss) and mice. Br J Nutr. 2011;105(10):1488-94. Available:https://doi.org/10.1017/S0007114510005414

Xiong J, Dai W, Mikaelyan A, Liu Y, Zhou Y. Gut microbial composition shapes the response of juvenile Nile tilapia (Oreochromis niloticus) to different feeding regimens. Fish Shellfish Immunol. 2018;76:155-65.

Available:https://doi.org/10.1016/j.fsi.2018.02.031

Gómez-Gil B, Roque A, Turnbull JF. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture. 2013;362-363:146-56. Available:https://doi.org/10.1016/j.aquaculture.2012.07.034

Kaktcham PM, Temgoua JB, Cho JC, Roh SW. Draft genome sequence of Carnobacterium maltaromaticum strain Pm16, isolated from Nile tilapia intestine. Genome Announc. 2016;4(2): e00303-16.

Available:https://doi.org/10.1128

FAO. Antibiotic resistance in aquaculture. Food and Agriculture Organization of the United Nations; 2018.

FAO. 2018-meeting the sustainable development goals. State World Fish Aquacult; 2018.

Tadesse G, Gebrekiros S, Abraha A. Antibiotic usage, residues and resistance genes in aquaculture: a review. Int J Food Contam. 2021;8(1):5.

Sarmiento MV, Rojas AM, Mejía-Rentería JC. Antibiotic resistance genes in aquaculture farms: A review of the existing evidence and future directions. J Environ Manag. 2020;257:109979.

Gomi S, Matsuda T, Matsuyama H, Ota H, Kamijo Y, Nakamura M et al. Antimicrobial susceptibility of bacteria isolated from freshwater fish and seafood marketed in Japan. J Food Prot. 2018;81(6):952-6.

Founou LL, Founou RC, Essack SY, El-Far OM. Antibiotic resistance in the food chain: A developing country-perspective. Front Microbiol. 2018;9:2659.

Figueiredo-Silva AC, da Costa ARA, Castelo-Branco RC, Chellappa NT, Nóbrega RH. Environmental impacts and feed conversion ratios in aquaculture systems: A review. Rev Aquacult. 2020;12(4):2147-65.

Shrivastava M, Gupta R, Shrivastava S. Improving feed conversion efficiency in aquaculture by optimizing feeding strategy. Rev Aquacult. 2021;13(2):944-59.

Jauncey K, Ross B. Recirculating aquaculture systems. Wiley-Blackwell; 2008.

Tacon AGJ, Metian M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev Fish Sci Aquacult. 2013;21(1):22-38. Available:https://doi.org/10.1080/23308249.2012.753416

Mohapatra S, Chakraborty T, Prusty AK, Das P, Paniprasad K. Beneficial effects of dietary probiotics mixture on hemato-immunological parameters, body composition, and growth performance of Labeo rohita fingerlings. Fish Physiol Biochem. 2012;38(3):673-84. Available:https://doi.org/10.1007/s10695-011-9575-5

Gatesoupe FJ. The use of probiotics in aquaculture. Aquaculture. 1999;180(1-2):147-65. Available:https://doi.org/10.1016/S0044-8486(99)00189-6

Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H. The efficacy of dietary probiotic supplementation on growth, body composition, and digestive enzyme activity in rohu, Labeo rohita (Hamilton) fingerlings. Aquacult Res. 2015;46(11): 2737-48. Available:https://doi.org/10.1111/are.12418

Hoseinifar SH, Shakouri M, Yousefi S, Van Doan H, Ringø E. Modulation of intestinal microbiota and immune response in rainbow trout (Oncorhynchus mykiss) using probiotics. Fish Shellfish Immunol. 2017;70:406-11.

Available:https://doi.org/10.1016/j.fsi.2017.09.044

Standen BT, Peggs DL, Rawling MD, Foey A, Davies SJ, Santos GA, et al. Dietary administration of a commercial mixed-species probiotic improves growth performance and modulates the intestinal immunity of tilapia, Oreochromis niloticus. Fish Shellfish Immunol. 2015;45(2): 733-41.

Available:https://doi.org/10.1016/j.fsi.2015.05.008

Nayak SK, Swain P, Mukherjee SC, Ramaiah N. Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham.). Fish Shellfish Immunol. 2007;23(4):892-6.

Available:https://doi.org/10.1016/j.fsi.2007.02.009

Manoppo H, Abdullah R, Yusoff FM, Shariff M. Effects of probiotics on growth performance, survival rate, feed utilization and resistance of common carp (Cyprinus carpio) fingerlings. Aquacult Res. 2019; 50(6):1636-46.

DOI: 10.1111/are.14021

Hai NV. The use of probiotics in aquaculture. J Appl Microbiol. 2015;119(4): 917-35. DOI: 10.1111/jam.12886

Tan LT, Chan KG, Lee LH, Goh BH. Strengthening probiotic characterization for improved application in fish aquaculture. Rev Aquacult. 2019;11(2):368-83. DOI: 10.1111/raq.12256

Ning X, Zhang X, Yu Z, Zhang H, Liu M, Guo W, et al. Hydrogen injection reduces ammonia nitrogen and shapes the microbial community in aquaculture water. J Cleaner Prod. 2023;336:129967. DOI: 10.1016/j.jclepro.2022.129967

Sivakumar S, Srinivasan M, Rajendran KV. Biodegradation of aquaculture wastewater using bacterial consortium isolated from sludge samples. J Environ Manag. 2020;261:110277. DOI: 10.1016/j.jenvman.2020.110277

Thurlow CM, Williams MA, Carrias A, Ran C, Newman M, Tweedie J, et al. Bacillus velezensis AP193 exerts probiotic effects in channel catfish (Ictalurus punctatus) and reduces aquaculture pond eutrophication. Aquaculture. 2019;503: 347-56. Available:https://doi.org/10.1016/j.aquaculture.2019.01.012

Torrecillas S, Makol A, Benítez-Santana T, Caballero MJ, Montero D, Sweetman J, et al. Reduced gut bacterial translocation in European sea bass (Dicentrarchus labrax) fed mannan oligosaccharides (MOS). Fish Shellfish Immunol. 2011;30(2): 674-81. Available:https://doi.org/10.1016/j.fsi.2010.12.011

Van den Ingh TSGAM, Krogdahl Å, Olli JJ, Hendriks HGCJM, Koninkx JGJF. Effects of soybean-containing diets on the proximal and distal intestine in Atlanticsalmon: A morphological study. Aquaculture. 1991;94(4):297-305.

Available:https://doi.org/10.1016/0044-8486(91)90181-w

Zhang YL, Duan XD, Jiang WD, Feng L, Wu P, Liu Y, et al. Soybean glycinin decreased growth performance, impaired intestinal health, and amino acid absorption capacity of juvenile grass carp (Ctenopharyngodon idella). Fish Physiol Biochem. 2019;45(5): 1589-602 Available:https://doi.org/10.1007/s10695-019-00697-6