Applications of DNA Barcoding in Fisheries: A Review

PDF

Published: 2023-12-07

DOI: 10.56557/upjoz/2023/v44i233796

Page: 351-371


Ashwit S. Shetty *

Department of Zoology, SVKM's Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics (Autonomous) Bhaktivedanta Swami Marg, Mumbai 400056, Maharashtra, India.

Hitesh U. Shingadia

Department of Zoology, SVKM's Mithibai College of Arts, Chauhan Institute of Science and Amrutben Jivanlal College of Commerce and Economics (Autonomous) Bhaktivedanta Swami Marg, Mumbai 400056, Maharashtra, India.

*Author to whom correspondence should be addressed.


Abstract

The review article focuses on the widespread application of DNA barcoding in the fishery background. With the advancement in science and technology, there is a dire necessity for upgradation in approaches for taxonomy, wildlife conservation, and health management in the fishery industry. To reduce invasiveness, illegal fishing, and health complications in fish in both marine as well aquaculture ecosystems different required mitigative measures need to be enforced. DNA barcoding is one important tool in biological science. It involves the sequencing of a small DNA segment called a ‘barcode’ of 648 base pairs. In animals and protists, the specific barcode is the mitochondrial gene cytochrome oxidase Ⅰ (COⅠ or COX 1) and it has proven to be extremely effective in identifying metazoans such as birds, butterflies, fish, flies, and many other animal groups. The use of DNA Barcoding has been proven to be effective in taxonomical classification of every group of organisms. In fishery, the application of barcoding created an avenue in marine conservation and aquaculture caretaking.

Keywords: COI, metabarcoding, fish, taxonomy, aquaculture


How to Cite

Shetty , A. S., & Shingadia, H. U. (2023). Applications of DNA Barcoding in Fisheries: A Review. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(23), 351–371. https://doi.org/10.56557/upjoz/2023/v44i233796

Downloads

Download data is not yet available.

References

Ahmed S, Ibrahim M, Nantasenamat C, Nisar MF, Malik AA, Waheed R et al. Pragmatic applications and universality of DNA barcoding for substantial organisms at species level: a review to explore a way forward. BioMed Res Int. 2022;2022: 1846485. DOI: 10.1155/2022/1846485

Haldar C, Nath S. DNA bar coding for fish species identification: current status and future prospective. Int J Fauna Biol Stud. 2020;7(4):73.

Hellberg RS, Pollack SJ, Hanner RH. Seafood Species Identification Using DNA Sequencing. In Seafood Authenticity and Traceability. 2016;113–132. Elsevier. Available:https://doi.org/10.1016/B978-0-12-801592-6.00006-1.

Kress WJ, Erickson DL. DNA barcodes: genes, genomics, and bioinformatics. Proc Natl Acad Sci U S A. 2008;105(8):2761-2. DOI: 10.1073/pnas.0800476105

Centre for Biodiversity Genomics, University of Guelph : The Global Taxonomy Initiative 2020: A Step-by-Step Guide for DNA Barcoding. Technical Series No. 94. Secretariat of the Convention on Biological Diversity, Montreal. 2021;66.

Yang F, Ding F, Chen H, He M, Zhu S, Ma X et al. DNA barcoding for the identification and authentication of animal species in traditional medicine. Evid Based Complement Alternat Med. 2018;2018: 5160254. DOI: 10.1155/2018/5160254

Tan SC, Yiap BC. DNA, RNA, and protein extraction: the past and the present. J Biomed Biotechnol. 2009;2009:574398. DOI: 10.1155/2009/574398

Ankola K, Mahadevegowda L, Melichar T, Boregowda MH. DNA barcoding. In Advances in Animal Genomics.2021;299–308. Elsevier.

Available:https://doi.org/10.1016/B978-0-12-820595-2.00018-7.

Hebert PDN, Ratnasingham S, deWaard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B. 2003;270;Suppl 1(suppl_1):S96-9. DOI: 10.1098/rsbl.2003.0025

Wilson JJ. DNA barcodes for insects. In: Kress WJ, Erickson DL, editors. Methods in Molecular Biology (Clifton, N.J.). Vol. 858. Humana Press; 2012. DOI: 10.1007/978-1-61779-591-6_3

CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106(31):12794-7. DOI: 10.1073/pnas.0905845106

Hollingsworth PM. Refining the DNA barcode for land plants. Proc Natl Acad Sci U S A. 2011;108(49):19451-2. DOI: 10.1073/pnas.1116812108

Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium, Fungal Barcoding Consortium Author List, Bolchacova E, Voigt K. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the national academy of Sciences. 2012;109(16):6241-6.. Available:https://doi.org/10.1073/pnas.1117018109.

Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C et al. Bar coding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 2012;10(11):e1001419. DOI: 10.1371/journal.pbio.1001419

Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977; 74(12):5463-7. DOI: 10.1073/pnas.74.12.5463

Parveen I, Gafner S, Techen N, Murch SJ, Khan IA. DNA barcoding for the identification of botanicals in herbal medicine and dietary supplements: strengths and limitations. Planta Med. 2016;82(14):1225-35. DOI: 10.1055/s-0042-111208

Staats M, Arulandhu AJ, Gravendeel B, Holst-Jensen A, Scholtens I, Peelen T et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal Bioanal Chem. 2016;408(17):4615-30. DOI: 10.1007/s00216-016-9595-8

Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, Mallet J et al. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proc Biol Sci. 2007;274(1627):2881-9. DOI: 10.1098/rspb.2007.1035

Rodriguez-Ezpeleta N, Mendibil I, Álvarez P, Cotano U. Effect of fish sampling and tissue storage conditions in DNA quality: considerations for genomic studies. Revista de Investigaciones Marinas. 2013;20:77-87.

Oosting T, Hilario E, Wellenreuther M, Ritchie PA. DNA degradation in fish: practical solutions and guidelines to improve DNA preservation for genomic research. Ecol Evol. 2020;10(16):8643-51. DOI: 10.1002/ece3.6558

Van Der Heijden I, Beijnen JH, Nuijen B. Long term stability of lyophilized plasmid DNA pDERMATT. Int J Pharm. 2013;453(2):648-50. DOI: 10.1016/j.ijpharm.2013.06.010

Hirabayashi M, Kato M, Ito J, Hochi S. Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote. 2005;13(1):79-85. DOI: 10.1017/S096719940500300X

Nagy ZT. A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol. 2010;10(1):91-105. DOI: 10.1007/s13127-010-0012-4.

Stoycheva T, Venkov P, Tsvetkov Ts. Mutagenic effect of freezing on mitochondrial DNA of Saccharomyces cerevisiae. Cryobiology. 2007;54(3):243-50. DOI: 10.1016/j.cryobiol.2006.10.188

Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR et al. Bacterial diversity and White Plague Disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 2009;3(5):512-21. DOI: 10.1038/ismej.2008.131

Gray MA, Pratte ZA, Kellogg CA. Comparison of DNA preservation methods for environmental bacterial community samples. FEMS Microbiol Ecol. 2013;83(2):468-77. DOI: 10.1111/1574-6941.12008

Smith LM, Burgoyne LA. Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper. BMC Ecol. 2004;4(1):4. DOI: 10.1186/1472-6785-4-4

Beckett SM, Laughton SJ, Pozza LD, McCowage GB, Marshall G, Cohn RJ et al. Buccal swabs and treated cards: methodological considerations for molecular epidemiologic studies examining pediatric populations. Am J Epidemiol. 2008;167(10):1260-7.DOI: 10.1093/aje/kwn012

Livia L, Antonella P, Hovirag L, Mauro N, Panara F. A nondestructive, rapid, reliable and inexpensive method to sample, store and extract high‐quality DNA from fish body mucus and buccal cells. Mol Ecol Notes. 2006;6(1):257-60. DOI: 10.1111/j.1471-8286.2005.01142.x.

Crabbe MJC. A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals. J Biochem Biophys Methods. 2003;57(2):171-6. DOI: 10.1016/S0165-022X(03)00051-4.

Lampel KA, Orlandi PA, Kornegay L. Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Appl Environ Microbiol. 2000;66(10):4539-42. DOI: 10.1128/AEM.66.10.4539-4542.2000

Rajendram D, Ayenza R, Holder FM, Moran B, Long T, Shah HN. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards. J Microbiol Methods. 2006;67(3):582-92. DOI: 10.1016/j.mimet.2006.05.010

Gustavsson I, Lindell M, Wilander E, Strand A, Gyllensten U. Use of FTA card for dry collection, transportation and storage of cervical cell specimen to detect high-risk HPV. J Clin Virol. 2009;46(2):112-6. DOI: 10.1016/j.jcv.2009.06.021

Barrett MT, Glogovac J, Porter P, Reid BJ, Rabinovitch PS. High yields of RNA and DNA suitable for array analysis from cell sorter purified epithelial cell and tissue populations. Nat Genet. 1999;23;Suppl 3:32-40. DOI: 10.1038/14266.

Mutter GL, Zahrieh D, Liu C, Neuberg D, Finkelstein D, Baker HE et al. Comparison of frozen and RNAlater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics. 2004;5(1):88. DOI: 10.1186/1471-2164-5-88

Nechvatal JM, Ram JL, Basson MD, Namprachan P, Niec SR, Badsha KZ et al. Fecal collection, ambient preservation, and DNA extraction for PCR amplification of bacterial and human markers from human feces. J Microbiol Methods. 2008;72(2) :124-32. DOI: 10.1016/j.mimet.2007.11.007

Wilkinson S, Law B, Whitney S, Coulon L, Clement O, Shireen L et al. Innovative technology to stabilize DNA at room temperature in tissue and cells. FASEB J. 2010;24(S1);Suppl 1. DOI: 10.1096/fasebj.24.1_supplement.650.4.

Sharpe A, Barrios S, Gayer S, Allan-Perkins E, Stein D, Appiah-Madson HJ et al. DESS deconstructed: is EDTA solely responsible for protection of high molecular weight DNA in this common tissue preservative? PLOS ONE. 2020;15(8) :e0237356. DOI: 10.1371/journal.pone.0237356

Mohammed Abubakar B, Mohd Salleh F, Shamsir Omar MS, Wagiran A. Review: DNA barcoding and chromatography fingerprints for the authentication of botanicals in herbal medicinal products. Evid Based Complement Alternat Med. 2017;2017:1352948. DOI: 10.1155/2017/1352948

Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci U S A. 2015;112(7):2076-81. DOI: 10.1073/pnas.1424997112

Gao Z, Liu Y, Wang X, Wei X, Han J. DNA mini-barcoding: A derived barcoding method for herbal molecular identification. Front Plant Sci. 2019;10:987. DOI: 10.3389/fpls.2019.00987

Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 2007;35(3):e14-. DOI: 10.1093/nar/gkl938

Meusnier I, Singer GA, Landry JF, Hickey DA, Hebert PD, Hajibabaei M. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics. 2008;9(1):214. DOI: 10.1186/1471-2164-9-214

Särkinen T, Staats M, Richardson JE, Cowan RS, Bakker FT. How to open the treasure chest? Optimising DNA extraction from herbarium specimens. PLOS ONE. 2012;7(8):e43808. DOI: 10.1371/journal.pone.0043808

Li M, Hou X-F, Zhang J, Wang S-C, Fu Q, He L-C. Applications of HPLC/MS in the analysis of traditional Chinese medicines. J Pharm Anal. 2011;1(2):81-91. DOI: 10.1016/S2095-1779(11)70015-6.

Booker A, Zhai L, Gkouva C, Li S, Heinrich M. From traditional resource to global commodities: –A comparison of Rhodiola species using NMR spectroscopy—metabolomics and HPTLC. Front Pharmacol. 2016;7:254. DOI: 10.3389/fphar.2016.00254

Barcaccia G, Lucchin M, Cassandro M. DNA barcoding as a molecular tool to track down mislabeling and food piracy. Diversity. 2015;8(4):2. DOI: 10.3390/d8010002.

Lalramliana S, Lalronunga S, Kumar S, Singh MDNA barcoding revealed a new species of Neolissochilus Rainboth, 1985 from the Kaladan River of Mizoram, North East India. Mitochondrial DNA A DNA Mapp Seq Anal. 2019;30(1):52-9. DOI: 10.1080/24701394.2018.1450398

Adler PH. Sibling Species. In Encyclopedia of Entomology. Kluwer Academic Publishers. 2004;2004.

Available: https://doi.org/10.1007/0-306-48380-7_3899

Rebijith KB, Asokan R, Kumar NKK, Krishna V, Chaitanya BN, Ramamurthy VV. DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bull Entomol Res. 2013;103(5):601-10. DOI: 10.1017/S0007485313000278

Inland Fisheries in India. (2023, April 17).

Available:https://dof.gov.in/inland-fisheries.

Pavan-Kumar A, Jaiswar AK, Gireesh-Babu P, Chaudhari A, Krishna G. Applications of DNA barcoding in fisheries. DNA barcoding and molecular phylogeny. 2020:177-89. DOI: 10.1007/978-3-030-50075-7_11.

Muschick M, Barluenga M, Salzburger W, Meyer A. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol Biol. 2011;11(1):116. DOI: 10.1186/1471-2148-11-116

Barry J, Newton M, Dodd JA, Hooker OE, Boylan P, Lucas MC et al. Foraging specialisms influence space use and movement patterns of the European eel Anguilla anguilla. Hydrobiologia. 2016; 766(1):333-48. DOI: 10.1007/s10750-015-2466-z.

Alberts EC. Study Finds Major Brands Selling Cat Food That Contain Protected Sharks [Conservation]. Mongabay Series: Oceans; 2022. Available:https://news.mongabay.com/2022/03/study-finds-major-brands-selling-cat-food-that-contain-protected-sharks/#:~:text=Study%20finds%20major%20brands%20selling%20cat%20food%20that%20contain%20protected%20sharks,-by%20Elizabeth%20Claire&text=Researchers%20used%20DNA%20barcoding%20to,protected%20under%20CITES%20Appendix%20II.

Galal-Khallaf A, Osman AGM, Carleos CE, Garcia-Vazquez E, Borrell YJ. A case study for assessing fish traceability in Egyptian aquafeed formulations using Pyrosequencing and metabarcoding. Fish Res. 2016;174:143-50. DOI: 10.1016/j.fishres.2015.09.009.

Gyamfua A, Shunkai H, Zhongdian D, Yusong G, Felix KAK, Christian AL et al. DNA barcoding of Ghanaian fish species: status and prospects. Afr J Biotechnol. 2019;18(27):659-63. DOI: 10.5897/AJB2019.16792.

Van Ginneken M, Decru E, Verheyen E, Snoeks J. Morphometry and DNA barcoding reveal cryptic diversity in the genus Enteromius (Cypriniformes: Cyprinidae) from the Congo basin, Africa. Eur J Taxon. 2017;(310). DOI: 10.5852/ejt.2017.310.

Van Der Bank F. A DNA barcoding study of seven cichlid species from southern Africa reveals their phylogenetic relationships. Afr J Aquat Sci. 2019;44(3):291-3. DOI: 10.2989/16085914.2019.1628703.

Masters G, Norgrove L. Climate change and invasive alien species. UK: CABI Working Paper. 2010;3.

Fadli N, Mohd Nor SA, Othman AS, Sofyan H, Muchlisin ZA. DNA barcoding of commercially important reef fishes in Weh Island, Aceh, Indonesia. PeerJ. 2020;8: e9641. DOI: 10.7717/peerj.9641

Bakun A. Patterns in the ocean: ocean processes and marine population dynamics. California Sea Grant College System, National Oceanic and Atmospheric Adminstration in cooperation with Centro de Investigaciones Biológicas del Noroeste. 1996.

Cowen RK, Paris CB, Srinivasan A. Scaling of connectivity in marine populations. Science. 2006;311(5760):522-7. DOI: 10.1126/science.1122039

Serafy JE, Cowen RK, Paris CB, Capo TR, Luthy SA. Evidence of blue marlin, Makaira nigricans, spawning in the vicinity of Exuma Sound, Bahamas. Mar Freshw Res. 2003;54(4):299. DOI: 10.1071/MF01273.

Govoni JJ, Laban EH, Hare JA. The early life history of swordfish (Xiphias gladius) in the western North Atlantic. Fish Bull. 2003;101(4):778.

Ralston S, Bence JR, Eldridge MB, Lenarz WH. An approach to estimating rockfish biomass based on larval production, with application to Sebastes jordani*. Fish Bull. 2003;101:129-46.

Richardson DE, Cowen RK. Diversity of leptocephalus larvae around the island of Barbados (West Indies): relevance to regional distributions. Mar Ecol Prog Ser. 2004;282:271-84. DOI: 10.3354/meps282271.

Panprommin D, Soontornprasit K, Tuncharoen S, Iamchuen N. Efficacy of DNA barcoding for the identification of larval fish species in the Upper and Middle Ing River, Thailand. Gene Rep. 2021;23:101057. DOI: 10.1016/j.genrep.2021.101057.

Mohanty B, Mahanty A, Ganguly S, Sankar TV, Chakraborty K, Rangasamy A et al. Amino acid compositions of 27 food fishes and their importance in clinical nutrition. J Amino Acids. 2014;2014:269797. DOI: 10.1155/2014/269797

Bogard JR, Thilsted SH, Marks GC, Wahab MdA, Hossain MAR, Jakobsen J et al. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J Food Compos Anal. 2015;42:120-33. DOI: 10.1016/j.jfca.2015.03.002.

Armani A, Castigliego L, Tinacci L, Gianfaldoni D, Guidi A. Molecular characterization of icefish, (Salangidae family), using direct sequencing of mitochondrial cytochrome b gene. Food Control. 2011;22(6):888-95. DOI: 10.1016/j.foodcont.2010.11.020.

Marko PB, Lee SC, Rice AM, Gramling JM, Fitzhenry TM, McAlister JS et al. Fisheries: Mislabelling of a depleted reef fish. Nature. 2004;430(6997):309-10. DOI: 10.1038/430309b

Shokralla S, Hellberg RS, Handy SM, King I, Hajibabaei M. A DNA mini-barcoding system for authentication of processed fish products. Sci Rep. 2015;5(1):15894. DOI: 10.1038/srep15894

Williamson M. Biological invasions. Chapman & Hall, London. 1996;244.

Ghosh S. The cost of invasive species bears heavy on Indian economy, finds study [Conservation]. The Cost of Invasive Species Bears Heavy on Indian Economy, Finds Study; 2022.

Available:https://india.mongabay.com/2022/05/the-cost-of-invasive-species-bears-heavy-on-indian-economy-finds-study/.

Saitoh K, Takagaki M, Yamashita Y. Detection of Japanese flounder-specific DNA from gut contents of potential predators in the field. Fish Sci. 2003;69(3):473-7. DOI: 10.1046/j.1444-2906.2003.00647.x.

Olden JD, LeRoy Poff N, Douglas MR, Douglas ME, Fausch KD. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol. 2004;19(1):18-24. DOI: 10.1016/j.tree.2003.09.010

Côté I, Green S, Morris J, Akins J, Steinke D. Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Mar Ecol Prog Ser. 2013;472:249-56. DOI: 10.3354/meps09992.

Sousa LL, Xavier R, Costa V, Humphries NE, Trueman C, Rosa R et al. DNA barcoding identifies a cosmopolitan diet in the ocean sunfish. Sci Rep. 2016;6(1):28762. DOI: 10.1038/srep28762

Nasren S, Basavaraja N, Shekar M, Al-Mamun MdA, Rathore SS, Abhiman PB et al. Use of DNA bar coding in the investigation of disputable meristic features for Hypselobarbus jerdoni (DAY, 1870) fingerlings. J Exp Zool India. 2020;23(1):113-8.

Crab R, Defoirdt T, Bossier P, Verstraete W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. 2012;356-357:351-6. DOI: 10.1016/j.aquaculture.2012.04.046.

Lebonah DE, Dileep A, Chandrasekhar K, Sreevani S, Sreedevi B, Pramoda Kumari J. DNA barcoding on bacteria: a review. Adv Biol. 2014;2014:1-9. DOI: 10.1155/2014/541787.

Elsaied H, Soliman T, Abdelmageed AA, Abu-Taleb HT. Applications and challenges of DNA barcoding and metabarcoding in African fisheries. Egypt J Aquat Res. 2021;47(1):1-12. DOI: 10.1016/j.ejar.2021.02.003.

Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic classification and assembly. Brief Bioinform. 2019;20(4):1125-36. DOI: 10.1093/bib/bbx120

Cruz-Laufer AJ, Artois T, Smeets K, Pariselle A, Vanhove MPM. The cichlid–Cichlidogyrus network: A blueprint for a model system of parasite evolution. Hydrobiologia. 2021;848(16):3847-63. DOI: 10.1007/s10750-020-04426-4.

Nadler SA, De León GP-P. Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology. 2011;138(13):1688-709. DOI: 10.1017/S003118201000168X

Mandira S, PK, B. : First report of three species of Argulus (Crustacea: Branchiura) infesting on redcan Oranda gold fish (Carassius auratus auratus) in India. Biolife. 2015;3(4):813-9.

Mohanty S, Mausumee Mohanty S, Sarma K, Kumar T, Dey A, Das P et al. Classical morphology and DNA barcoding based identification of freshwater ectoparasite, Argulus foliaceus in rohu Labeo rohita: morphological and DNA barcoding based identification of fish ectoparasite. Indian J Fish. 2023;70(1). DOI: 10.21077/ijf.2023.70.1.132415-16.

Ogawa K, Bondad-Reantaso MG, Fukudome M, Wakabayashi H. Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. J Parasitol. 1995;81(2):223-7. doi: 10.2307/3283923, PMID 7707197.

Ogawa K, Shirakashi S, Ishitani H. Insemination of the monogenean Neobenedenia girellae (Capsalidae, Benedeniinae). Parasitol Int. 2014;63(2):473-8. DOI: 10.1016/j.parint.2013.10.009

Reyes‐Becerril M, Alamillo E, Trasviña A, Hirono I, Kondo H, Jirapongpairoj W et al. In vivo and in vitro studies using larval and adult antigens from Neobenedenia melleni on immune response in yellowtail (Seriola lalandi). J Fish Dis. 2017;40(11):1497-509. DOI: 10.1111/jfd.12620

Argüello-Guevara W, Apolinario W, Bohórquez-Cruz M, Reinoso S, Rodríguez S, Sonnenholzner S. Effects of intermittent feeding on water quality, skin parasites, feed consumption, and growth performance of juvenile longfin yellowtail Seriola rivoliana (Valenciennes, 1833). Aquacult Res. 2018;49(11):3586-94. DOI: 10.1111/are.13825.

Brazenor AK, Bertozzi T, Miller TL, Whittington ID, Hutson KS. DNA profiling reveals Neobenedenia girellae as the primary parasitic monogenean in global fisheries and aquaculture. Mol Phylogenet Evol. 2018;129:130-7. DOI: 10.1016/j.ympev.2018.05.012

Sepúlveda FA, González MT. DNA barcoding evidence for the first recorded transmission of Neobenedenia sp. From wild fish species to Seriola lalandi cultured in an open recirculating system on the Coast of Northern Chile. Aquaculture. 2019;501:239-46. DOI: 10.1016/j.aquaculture.2018.11.037.

Naz S, Chatha AMM, Khan RU. Pragmatic applications of DNA barcoding markers in identification of fish species – a review. Ann Anim Sci. 2023;23(2):363-89. DOI: 10.2478/aoas-2022-0073.

Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfield JB, Hebert PDN. A minimalist barcode can identify a specimen whose DNA is degraded. Mol Ecol Notes. 2006;6(4):959-64. DOI: 10.1111/j.1471-8286.2006.01470.x.

Ballard JWO, Whitlock MC. The incomplete natural history of mitochondria. Mol Ecol. 2004;13(4):729-44. DOI: 10.1046/j.1365-294X.2003.02063.x

Rourke ML, Fowler AM, Hughes JM, Broadhurst MK, DiBattista JD, Fielder S et al. Environmental DNA (eDNA) as a tool for assessing fish biomass: a review of approaches and future considerations for resource surveys. Environ DNA. 2022;4(1):9-33. DOI: 10.1002/edn3.185.

Davis J. Environmental DNA: what is it and how can it help us protect wildlife?, (2021, May 23), British Wildlife. https://www.nhm.ac.uk/discover/what-is-environmental-dna-edna.html.

Ruppert KM, Kline RJ, Rahman MS. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. 2019;17:e00547. DOI: 10.1016/j.gecco.2019.e00547.

Hansen BK, Bekkevold D, Clausen LW, Nielsen EE. The sceptical optimist: challenges and perspectives for the application of environmental DNA in marine fisheries. Fish Fish. 2018;19(5):751-68. DOI: 10.1111/faf.12286.

Strickler KM, Fremier AK, Goldberg CS. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv. 2015;183:85-92. DOI: 10.1016/j.biocon.2014.11.038.

Lorenz MG, Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563-602. DOI: 10.1128/mr.58.3.563-602.1994

Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P. Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils. 2009;45(3):219-35.DOI: 10.1007/s00374-008-0345-8.

Tsuji S, Ushio M, Sakurai S, Minamoto T, Yamanaka H. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance. PLOS ONE. 2017;12(4):e0176608. DOI: 10.1371/journal.pone.0176608

Salter I. Seasonal variability in the persistence of dissolved environmental DNA (eDNA) in a marine system: the role of microbial nutrient limitation. PLOS ONE. 2018;13(2):e0192409. DOI: 10.1371/journal.pone.0192409

Zulkefli NS, Kim KH, Hwang SJ. Effects of microbial activity and environmental parameters on the degradation of extracellular environmental DNA from a eutrophic lake. Int J Environ Res Public Health. 2019;16(18):3339. DOI: 10.3390/ijerph16183339

Ramírez-Amaro S, Bassitta M, Picornell A, Ramon C, Terrasa B. Environmental DNA: state-of-the-art of its application for fisheries assessment in marine environments. Front Mar Sci. 2022;9:1004674. DOI: 10.3389/fmars.2022.1004674.