In vitro ANTI-OXIDANT AND ANTI-CANCER EFFICACY OF SILVER NANOPARTICLES SYNTHESIZED FROM THE SEAWEED Syringodium isoetifolium (D.) (1939) COLLECTED FROM THE PULICAT LAKE OF TAMIL NADU
UTTAR PRADESH JOURNAL OF ZOOLOGY, Volume 42, Issue 12,
Page 54-67
Abstract
Seaweed is a natural, renewable and much unexplored marine resource, which are capable and reliable sources in the field of pharmaceuticals and drug discovery. The seaweed, Syringodium isoetifolium is our target plant for the study, which was collected from the Pulicat lake of Tamil Nadu. The obtained seaweeds were processed and the silver nanoparticles were synthesized from the aqueous extract of the plant material. The formation of silver nanoparticles was characterized using the UV visible spectroscopy, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). After the characteristic confirmation, the biosynthesized nanoparticles were evaluated for its antioxidant potential using various appropriate assays (DPPH, FRAP and ABTS), also the anti-proliferative efficacy of the same was determined using MTT assay against cancerous cell lines (COLO 320 and MCF-7).
- Syringodium isoetifolium
- silver nanoparticles
- anti-oxidant activity and anti-cancer activity
How to Cite
References
Rhein-Knudsen N, Ale MT, Meye AS. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Marine drugs. Mar. Drugs. 2015; 13:3340-3359.
DOI: 10.3390/md13063340
Deepak P, Amutha V, Birundha R, Sowmiya R, Kamaraj C, Balasubramanian V, Balasubramani G, Aiswarya D, Arul D, Peruma P. Facile green synthesis of nanoparticles from brown seaweed Sargassum wightii and its biological application potential. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2018;9(035019):10.
Available:https://doi.org/10.1088/2043-6254/aadc4a
Santhoshkumar J, Rajeshkumar S, Kumar SV. Biochem. Biophy. Rep. 2017;1146.
Chattopadhyay K, Ghosh T, Pujol CA, Carlucci MJ, Damonte EB, Ray B. Polysaccharides from Gracilaria corticata: Sulfation, chemical characterization and anti- HSVactivities, International Journal of Biological Macromolecules. 2008;43(4)):346-351.
ISSN: 0141-8130.
Available:https://doi.org/10.1016/j.ijbiomac.2008.07.009.
Souza BWS, Miguel A, Cerqueira MA, Bourbon AI, Pinheiro AC, Martins JT, Teixeira JA, Coimbra MA, Vicente AA. Chemical characterization and antioxidant activity of sulfated polysaccharide from the red seaweed Gracilaria birdiae. Food Hydrocolloids. 2012; 27:287-292.
Asaraja A, Sahayaraj K. Screening of insecticidal activity of brown macro algal extracts against Dysdercus cingulatus (Fab.) (Hemiptera: Pyrrhocoridae). J. Biopest. 2013; 6(2):193-203.
Sellimi S, Maalej H, Rekik DM, Benslima AK, souda GK, Hamdi M, Sahnoun Z, Li Suming, Nasri M, Hajji M. Antioxidant, antibacterial and in vivo wound healing properties of laminaranpurified from Cystoseira barbata seaweed. International Journal of Biological Macromolecules; 2018.
DOI: 10.1016/j.ijbiomac.2018.07.171
Seca AML, Pinto DCGA. Overview on the Antihypertensive and Anti-Obesity Effects of Secondary Metabolites from Seaweeds. Marinedrugs. Mar. Drugs. 2018;16:237;
DOI: 10.3390/md16070237
Nguyen TH, Nguyen TH, Nguyen VM, Nguyen TLP, Tran TVA, Do AD, Kim SM. Antidiabetic and antioxidant activities of redseaweed Laurencia dendroidea. Asian Pacific Journal of Tropical Biomedicine. 2019;9(12):501-509.
DOI: 10.4103/2221- 1691.271723.
Parashar V, Prashar R, Sharma B, Pandey AC. Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Digest J. Nanomaterials and Biostructures. 2009;4:45-50.
Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinose grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry. 2019;9:1–9.
https://doi.org/10.1007/s40097-018- 0291-4.
Naqui A, Britton C, Cadenas E. Reactive oxygen intermediates in biochemistry. Ann. Rev. Biochem. 1996;55:137-166.
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Reviews of Plant Biology. 2004;55:373-399.
Kalyanaraman B. Teaching the basics of Redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol. 2013;1:244-257.
Mailloux RJ. Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biol. 2015;4:381-398.
Storey K. Oxidativestress: Animal adaptations in nature. Braz. J. Med. Biol. Res. 1996;29: 1715-1733.
Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol. Environ. Saf. 2006;64:178-189.
Sies H. Strategies of antioxidant defense. Eur. J. Biochem. 1993;215:213-219.
Rao YK, Geethangili M, Fang SH, Tzeng YM. Antioxidant and cytotoxic activities ofnaturally occurring phenolic and related compounds: a comparative study. Food Chem. Toxicol. 2007; 45:1770-1776.
Abirami S, Bharathi R, Jayanthi J, Ragunathan MG. Antioxidant property of the pigment extracted from the edible crustacean shell wastes. European Journal biomedical and Pharmaceutical sciences. 2015;2(6):197- 200.
Sujeetha M, Sharmila S, Jayanthi J, Ragunathan MG. Antioxidant property of some extracts derived from the mud crab. Scylla serrata. International Journal of Phytopharmacology. 2015;6(2):111-113.
Mohanapriya M, Jayanthi J, Devakumar D, Ragunathan MG. In vitro evaluation of free radical scavenging activity of the flower Hybanthus enneaspermus (L.) F. Muell. extract. International Journal of Phytopharmacology. 2016;7(4):159-163.
Nithya TG, Jayanthi J, Ragunathan MG. Antioxidant activity, total phenol, flavonoid, alkaloid, tannin, and saponin contents of leaf extracts of Salvinia molesta D. S. Mitchell (1972). Asian J Pharm Clin Res. 2016;9(1): 200-203 (Scopus).
Sumalatha D, Jayanthi J, Ragunathan MG. Antioxidant property of the crude peptide extracts of a fresh water crab, Oziotelphusa senex senex. Int J Pharm Bio Sci. 2016;7(3): 202–207.
Vijayan S, Seethalakshmi B, Jayanthi J, Ragunathan MG. Evaluation of phytochemical screening and antioxidant activity of Butea superb Roxb. flower extract. International Journal of Biological & Pharmaceutical Research. 2016;7(9):340-343.
Lobban C, Harrison P. Seaweed ecology and physiology. Cambridge University Press, Cambridge. 1997;366.
Collén J, Davison IR. Stress tolerance and reactive oxygen metabolism in the intertidal redseaweeds Mastocarpusstellatus and Chondruscripus. Plant Cell Environ. 1999;22: 1143-1151.
Stengel DB, Connan S, Popper ZA. Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol. Adv. 2011;29:483-501.
Balboa EM, Conde Moure EA, Falqué E, Domínguez H. In vitro antioxidant properties of crude extracts and compounds from brown algae. Food Chem. 2013;138:1764-1785.
Sordet C, Porcia LC, Lovazzano C, Goulitquer S, Andrade S, Potin P, Correa JA. Physiological plasticity of Dictyota kunthii (Phaeo-phyceae) to copper excess. Aquat. Toxicol. 2014;150:220-228.
Gaete H, Moyano N, Jara C, Carrasco R, Lobos G, Hidalgo M. Assessment oxidative stress biomarkers and metal bioaccumulation in macroalgae from coastal areas with mining activities in Chile. Environ. Monit. Assess. 2016;188(1):25.
DOI: 10.1007/s10661-015-5021- 5.
Wang C, Wu T, Hsieh S, Tsai Y, Yeh C, Huang C. Antioxidant activity and growth inhibition of human colon cancer cells by crude andpurified fucoidan preparations extracted from Sargassum cristaefolium. Journal of food and drug analysis. 2015;23:766e777.
Mmola M, Roes-Hill ML, Durrell K, Bolton JJ, Sibuyi N, Meyer ME, Denzil R, Beukes, Antunes E. Enhanced antimicrobial and anticancer activity of silver and gold Nanoparticles Synthesised Using Sargassum incisifolium Aqueous Extracts. Molecules. 2016;21(12):1633.
Miranda DA, Montoya MJ, Araos MP Mellado M, Villena J, Arancibia P, Madrid A, Gutierrez CJ. Antioxidant and anti-cancer activities of brown and red seaweed extracts from Chilean coasts. Lat. Am. J. Aquat. Res. 2018;46(2): 301-313.
DOI: 10.3856/vol46-issue2-
Hemasudha TS, Thiruchelvi R, Balashanmugam P. Antioxidant, antibacterial, and anticanceractivity from marine red algae Gracilaria edulis. Asian J Pharm Clin Res. 2019;12(2):276-279.
DOI:http://dx.doi.org/10.22159/ajpcr.2019.v12i2.29883.
Park SU. Anticancer compounds from plants. EXCLI Journal. 2012;11:386–389.
World Health Organization (WHO), The Global Burden of Disease: 2004 Update, WHO, Geneva, Switzerland; 2008.
Bray F, Ferlay J, Soerjomataram SI, Siegel RL, Torre LA, Jemal A. Global cancerstatistics: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CAA Cancer J. Clin. 2018;68:394–424.
Wu J, Wu Y, Yang BB. Anticancer activity if Hemsleya amabilis extract. Life Sci. 2002; 71(18):2161-2170.
Kviecinski MR, Felipe KB, Schoenfelder T, de Lemos Wiese LP, Rossi MH, Gonçalez E, Felicio JD, Filho DW, Pedrosa RC. Study of the antitumor potential of Bidens pilosea (Asteraceae) used in Brazilian folk medicine. J. Ethno pharmacol. 2008;117(1):69–75.
Gordaliza M. Natural products as leads to anticancer drugs. Clinical and Translational Oncology. 2007;9(12):767–776.
Conde J, Doria G, Baptista P. Noble metal nanoparticles applications in cancer. J Drug Deliv. 2012;2012:751075.
https://doi.org/10.1155/2012/751075.
Jiang X, Foldbjerg R, Miclaus T, Wang L, Singh R, et al. Multiplatform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett. 2013;222(1): 55-63.
Souza TA, Franchi LP, Rosa LR, Da Veiga MA, Takahashi CS. Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet Toxicol Environ Mutagen. 2016;795:70-83.
National cancer institute at the national Institutes of health.
Available:www.cancer.gov/nano/cancer-nanotechnology/treatment
Zubia M, Fabre M. S, Kerjean V and Deslandes E. Antioxidant and cytotoxic activities of some redalgae (Rhodophyta) from Brittany coasts (France). Bot. Mar. 2009a;52:268-277.
Zubia M, Fabre MS, Kerjean V, Le Lann K, Stiger-Pouvreau V, Fauchon M, Deslandes. E. Antioxidant and antitumoural activities of some Phaeophyta from Brittany coasts. FoodChem. 2009b;116:693-701.
Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P. Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J. Appl. Phycol. 2012;24:1123-1132.
Murphy C, Hotchkiss S, Worthington J, Mc Keown SR. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J. Appl. Phycol. 2014;26:2211-2264.
Li YX, Li Y, Qian ZJ, Kim MM, Kim SK. In vitro antioxidant activity of 5-HMF isolated from marine red alga Laurencia undulata in free radicalmediated oxidative systems. J. Microbiol. Biotechnol. 2009;19:1319-1327.
Lhullier C, Falkenberg M, Ioannou E, Quesada A, Papazafiri P, Horta PA, Schenkel EP, Vagias C, Roussis V. Cytotoxic halogenated metabolites from the Brazilian red alga Laurenciacatarinensis. J. Nat. Prod. 2010;73: 27-32.
Campos A, Souza CB, Lhullier C, Falkenberg M, Schenkel EP, Ribeiro RM. do Valle, Siqueira JM. Anti-tumor effects of elatol, a marine derivative compound obtained from redalgae Laurenciamicrocladia. J. Pharm. Pharmacol. 2012;64:1146-1154.
Daisy A, indra V, geetha S, Seetharaman S, Selvamuthu B. Phytochemical profiling of seaweeds collected from Pulicat lake, coramandal coast of south India. World journal of pharmacy and pharmaceutical science. 2016;5(7):1292-1297.
Ramesh R, Nammalwar P, Gowri VS. Database on Coastal Information of Tamilnadu; 2008.
Bhagyaraj I, kunchithapatham VR. Diversity and distribution of seaweeds in the shores and water lagoons of Chennai and Rameshwaram coastal area, south- eastern coast of India. Biodiversity Journal. 2016;7(4):923-934.
Raj AR, Ganesh J, Prakasam A, krishnamoorthy D, Tomson M, Milton MCJ. Fauna associated with the marine macro alga chaetomorpha aerea (Dilwyn) kutzing, (chlorophyceae) in pulicat estuary, Tamilnadu, India. International Journal of Fisheries and Aquatic Studies. 2017;5(1):319-326.
Abideen S, Sankara VM. In vitro screening of Anti diabetic and antimicrobial activity against Green Synthesized AgNo3 using seaweeds. Journal of Nanomedicine and Nanotechnology; 2015.
Available:http:/dx.doing.org/10.4172/2157-7439.s6-001.
Molyneux P. The use of the stable radical Diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity. 2004;26.
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-evans C. Antioxidant activity applying an improved ABTS radical decolorization assay. Free Radical Biology and Medicine. 1999;26:1231–1237.
Benzie I, Devaki M. The ferric reducing/anti-oxidant power (FRAP) assay for non- enzymatic antioxidant capacity: Concepts, procedures, limitations and applications: Recent Trends and Applications; 2017.
DOI: 10.1002/9781119135388.ch5.
Mosmann T. Rapid colorimetric assay for cellular growth and survival Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63.
Mann J. Natural products in cancer chemotherapy: Past, present and future. Nat Rev Cancer. 2001;2:143–8.
Diplock AT. Will the good fairies please prove to us that vitamin E lessens human degenerative disease?. Free Rad Res. 1997;27: 511–32.
Mani AE, Aiyamperumal V, Patterson J, Devadason S. Phytochemicals of the seagrass Syringodium isoetifolium and its antibacterial and insecticidal activities. Eur. J. Biol. Sci. 2012;4(3):63-67.
Vijayalingam T, Rajesh NV. Seagrasses as potential source of fodder for livestock: Complete proximate and gas chromatography-mass spectrometry (GCMS) analysis. Annals of Phytomedicine. 2019;8(2):93-98.
DOI: http://dx.doi.org/10.21276/ap.2019.8.2.10
Duke J. Phytochemical and Ethnobotanical Databases; 2019.
https://phytochem.nal.usda.gov/phytochem/search/list.
Sujarwo W, Keim AP. Spondia spinnata (L.f.) Kurz. (Anacardiaceae): Profiles and Applications to Diabetes. Bioactive Food as Dietary Interventions for Diabetes; 2019.
Available:https://doi.org/10.1016/B978-0-12-813822-9.00027-8
Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005;53: 4290–4302.
Manna C, D’Angelo S, Migliardi V, Loffredi E, Mazzoni O, Morrica P, Galletti, P Zappia V. Protective effect of the phenolic fraction from virgin olive oils against oxidative stressinhumancells. J. Agric. Food Chem. 2002;50:6521–6526
Martin-Cordero C, Leon-Gonzalez AJ, Calderon- Montano JM, Burgos-Moron E, Lopez-Lazaro M, Prooxidant natural products as anticancer agents. Current Drug Targets. 2012;13(8):1006–1028.
Supraja N, Prasad TNVKV, Soundariya M, Babujanarthanam R. Synthesis, characterization and dose dependent antimicrobial and anticancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line AIIMS Bioengineering. 2016;3(4):425-440.
DOI: 10.3934/bioeng.2016.4.425.
Sabatini P, Devi CA. Anti-Microbial, Ovicidal, Larvicidal, Anti-diabetic and cytoxicity activity of Silver Nanoparticles from brown seaweed (Stoechospermum marginatum). International journal of Pharmaceutical Sciences and Research. 2018;9(4):1555-1564.
Liu Z, Gao T, Yang Y, Meng F, Zhan F, Jiang Q, Sun X. Anti-cancer activity of porphyran and carrageenan from red seaweeds. Molecules. 2019;24:4286.
DOI: 10.3390/molecules24234286
Angel CRR. A study on phytochemical screening and anti-cancer activity of the methanolic extracts of sea grass Syringodium isoetifolium against celllines. PhD Thesis submitted to Bharathidasan University, Tiruchirapally; 2016.
-
Abstract View: 769 times
PDF Download: 13 times