TYPE-II PYRETHROID INDUCED ABNORMALITIES IN Drosophila melanogaster

PDF

Published: 2022-06-07

DOI: 10.56557/upjoz/2022/v43i103040

Page: 61-66


HARENDRA NATH SHARMA *

Department of Zoology, Shri Varshney College, Aligarh, UP, India.

MOHD SHOEB

Department of Zoology, Gandhi Faiz e Aam College, Shahjahanpur, UP, India.

*Author to whom correspondence should be addressed.


Abstract

Biodiversity is a popular issue today. Vast biodiversity is available on our planet from ancient time. Among al groups, insects are very important for ecosystem. Insects are worthy for human beings by many ways viz. - help in pollination, production of useful substances etc. However, many of these insects are very harmful to us in many ways like destroy our crops, stored food products, cause of dreadful diseases. Common categories of pesticides are organophosphate, organochlorine and carbamate which are common pesticides in country and used externally to control this destruction. Now it is necessary to test the potency of pyrethroid for indoor use which are safer comparatively. The present study reveals pyrethroid sample lambda-cyhalothrin tested in Drosophila melanogaster, a dipteran insect. After treatment, a significant change in morphological parameters like decreased larvae number and darkening of caterpillars front and morphometrical changes i.e. decrease in length of larvae, weight of larvae and adult fly weight of Drosophila melanogaster. The obtained data were statistically signified to confirm the biological and appropriate importance of the research work  conducted.

Keywords: Type II Pyrethroid, Drosophila melanogaster, morphological study, morphometrical study


How to Cite

SHARMA, H. N., & SHOEB, M. (2022). TYPE-II PYRETHROID INDUCED ABNORMALITIES IN Drosophila melanogaster. UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(10), 61–66. https://doi.org/10.56557/upjoz/2022/v43i103040

Downloads

Download data is not yet available.

References

Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology. 2003;33:563-577.

Nadda G. Response of certain mutant forms of Drosophila melanogaster to beta-cyfluthrin. Ph.D. Thesis. Dr. B.R. Ambedkar University, Agra; 2002.

Srivastava S. Effect of alphamethrin on cuticular hydrocarbons of the developmental stages of wild and mutant (white) forms of Drosophila melanogaster. M.Phil. Diss., Dr. B.R. Ambedkar University, Agra; 2004.

Tyagi ID. Biochemical assessment of moulting efficacy in wild and mutant form of Drosophila melanogaster under the stress of Alphamethrin, a synthetic pyrethroid. M.Phil. Diss. Dr. B.R. Ambedkar University, Agra; 2005.

Sharma HN. Effect of lambda-cyhalothrin, a synthetic pyrethroid on cuticular macromolecules of Drosophila melanogaster. Ph.D. Thesis, Dr. B.R. Ambedkar University, Agra; 2005.

Humason GL. Animal Tissue Techniques (4th edition). W.H. Freeman and Company, San Francisco. 1979;661.

Iconomidou VA, Willis JH, Hamodrakas SJ. Unique features of the structural model of hard cuticle proteins : implications for chitin-protein interactions and cross-linking in cuticle. Insect Biochem. Mol. Biol. 2005;35: 553-560.

Lockey KH. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 1988;89B(4):595-645.

Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology. 2003;206:4393- 4412.

Brookhart GL, Kramer KJ. Proteinases in moulting fluid of the tobacco hornworm, Manduca sexta. Insect Biochemistry. 1990;20(5):467-477.

Bykhavyets SL, Zalatar RM, Bykhavyets A.I. Biological activity of polyhydroxysteroids. Vyestsi Akademii Navuk Byelarusi Syeryya Biy Alahichnykh Navuk. 1995;0(1): 54- 58.

Dean SR, Meola W, Meola SM, Bhatkar HS, Schenker R. Mode of action of lufenuron in adult Ctenocephalides felis (Siphonaptera: Pulicidae). Entomological Soc. America. 1999;36(4): 486-492.

DeCock A, Degheele D. Effects of buprofezin on the ultrastructure of the third instar cuticle of the insect Trialeurodes vaporariorum. Tissue Cell. 1991;23(5): 755-762.

Srivastava G. Insecticidal potency of certain newly synthesized tin complexes against wild and mutant vinegar fly. Ph.D. Thesis. Dr. B.R. Ambedkar University, Agra; 2002.

Saxena PN, Srivastava G. Evaluation of growth index of Drosophila melanogaster after tributyltin chloride intoxication. Ind. J. Ent. 2002;64(4): 138-140.

Finney DJ. Probit Analysis, Cambridge University Press. 1971;303.

Somogyi M. Notes on sugar determination. J biol Chem. 1952;195:19-23..

Folch J, Less M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226: 497.

Reissig JL, Strominger JL and Leloir LF. A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry. 1955;217:959-966.

Fischer RA, Yates. Statistical Tables for Biological, Agriculture and Medical Research. Longman VI edition, 1950;X+146.

Saleem MA, Shakoori AR. Starvation and refeeding in Tribolium castaneum (Herbst.). I. Effect on some biochemical components of sixth instar larvae. Can. J. Zool. 1986b;64: 1628-1632.

Ramachandran R, Mukherjee SN, Sharma RN. Effect of food deprivation and concentration of azadirachtin on the performance of Achoea janata and Spodoptera litura (Fab.) on young and mature leaves of Ricinus communis. Entomologia Experimentalis et Applicata. 1989;51: 29-35.

Sayed EI. Neem Azadirachta indica seed as antifeedant and oviposition repellents for Egyptian cotton leaf worm Spodoptera litura (Fab.). Bull. Entomol. Soc. Egypt. 1983;13:49-58.

Rao SRK, Chitra KC. Effect of plant extracts on larval weight and duration of Spodoptera litura Fab. J. Appl. Zool. Res. 2000;11(2-3):98-100.

Tripathi AK, Narayan S. Lipid metabolism in post embryonic stages of Antheraea mylitta D. Proc. Zool. Soc. India. 2003;2(2): 45-49.

Armstrong KF, Bonner AB. Investigation of a permethrin-induced antifeedant effect in Drosophila melanogaster : An Ethological Approach. Pestic.Sci. 1985;16: 641–650.

Mulder R, Gijswijt MJ. The laboratory evaluation of two promising new insecticides which interfere with cuticle deposition. Pestic. Sci. 1973;4:737-745.

Ramalingam K. Toxic stress and animal metabolism. Uttar Pradesh J. Zool. 2003;23(1): 27-33.

Riddiford LM, Ashburner M. Effects of juvenile hormone mimics on larval development and metamorphosis of Drosophila melanogaster. Gen. Comp. Endocrinol. 1991;82(2):172-183.

Shakoori AR, Malik MZ, Saleem MA. Toxicity of cyhalothrin (Karate) to sixth instar larvae of Pakistani strain of Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae). Pak. J. Zool. 1994;26(1): 57-64.

Thompson SN. Gluconeogenesis in an insect, Manduca sexta L., estimated from the 13C isotopomer distribution in trehalose synthesized form [1,2-13C2] glycerol. Biochemica – et – Biophysica – Acta - General-Subjects. 1997;1336(1): 110-116.

Muzzarelli R. A future ecological tragedy? Insecticidal inhibition of the synthesis of chitin. Inquinamento. 1974;16(3):29-30.

Hajjar NP. Mechanism of the insecticidal action of diflubenzuron. Diss Abstr. Int. 1979;B39(8):3676.

Saxena PN, Saxena SC. Malathion induced pathological changes in the cuticle of Periplanata americana L. J. Raj. Studies in Zool. 1981;156-159.

Kramer KJ, Hopkins TL, Schaefer J. Applications of solid NMR to the analysis of insect sclerotized structures. Insect Biochemistry and Molecular Biology. 1995;25:1067-1080.

Salama EM, El-Sherbini S, Mohmoud H, Kader A, Jori G. Site of action of hematoporphyrin (a photo activated insecticide) in Culex pipiens larvae. Egypt. J. Biol. 2002;4: 133-141.

Saxena SC, Saxena PN. Resistance of female Periplanata americana L. to malathion. Ann. Entomol. 1984;2(1):55-58.

Soltani N, Chebira S, Delbecque JP, Delachambre J. Biological activity of flucycloxuron, a novel benzoylurea derivative, on Tenebrio molitor: comparison with diflubenzuron and triflumuron. Experientia. 1993;49(12): 1088-1091.

Sudhakaran R. Studies on the cuticular wax layer in Gymnopleurus sp. Ind. J. Ent. 2002;64(4): 393-396.

Upadhayay VK. Efficacy of herbal plant extract (Tagetes erecta) marigold on the biology of Drosophila melanogaster (Meign). M.Phil. Diss., Dr. B.R. Ambedkar University, Agra; 2004.

Wilson TG, Cryan JR. Lufenuron, a chitin synthesis inhibitor, interrupts development of Drosophila melanogaster. J. Exp. Zool. 1997;278(1): 37-44.

Harendra N. Sharma, Prabhu N. Saxena, Amit Kumar Singh , Namrata Rana and Nishi Saxena. Type-II pyrethroid, disruptor of chitin biosynthesis in Drosophila melanogaster mutant. 2016;3(6):2349-5480.