ENZYME-PRODUCING GUT BACTERIA OF FISH AND ITS EFFECT ON FISH HEALTH: A REVIEW

PUJA SARMAH *

Department of Life Sciences, Dibrugarh University, 786004, Assam, India.

DEVID KARDONG

Department of Life Sciences, Dibrugarh University, 786004, Assam, India.

*Author to whom correspondence should be addressed.


Abstract

Like all multicellular organisms fish also lives in close association with microorganisms. They live in a symbiotic relationship and the bacteria provide protection, immunity and metabolic strength to the host and in return, the host gives nutrient-enriched media to it. Gut microbes of fish secret amylase, lipase, cellulase, protease, chitinase etc. and they play a significant role in digestion. To date, most of the studies on gut microbiota have emphasized the mammal. Contrary to this, information about the host-microbe interactions in fishes is limited. Therefore, a better understanding of this topic is the need of the hour. Exogenous enzymes can be produced by the gut microbes such as Lactobacillus spp., Pseudomonas spp., and Vibrio spp. etc to improve the digestion of food and degradation of complex and large molecules, such as protein, starch, and chitin. Similarly, when the composition of microbiota changes many biosynthesis and metabolism pathways of carbohydrates, amino acids, and lipids also change. Epithelial absorption of fatty acid is facilitated by the colonization of the gut microorganisms, this colonization also protects the host against pathogenic bacteria. To achieve sustainable disease control and nutrient enhancement strategies in aquaculture practices an understanding of the dynamics and functions of the gut microbial community in fish is necessary as it will enable a more profound selection of the beneficial microorganisms. 

Keywords: Enzymes, fish gut-bacteria, immunity, microbes, probiotics


How to Cite

SARMAH, P., & KARDONG, D. (2022). ENZYME-PRODUCING GUT BACTERIA OF FISH AND ITS EFFECT ON FISH HEALTH: A REVIEW. UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(15), 1–16. https://doi.org/10.56557/upjoz/2022/v43i153117

Downloads

Download data is not yet available.

References

Uma A, Subash P, Abraham TJ. Importance of gut microbiota in fish – A review. Indian J Anim Heal. 2020;59:181–194.

Austin B. The bacterial microflora of fish. Scientific World Journal. 2002;2:558–572.

Ringo E. Intestinal microflora of fish larvae and fry. Aquacult Res. 1999;30:73–93.

Merrifield DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bogwald J, Castex M, Ringo E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture. 2010;302:1–18.

Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26:493–501.

Tarnecki AM, Burgos FA, Ray CL, Arias CR. Fish intestinal microbiome:diversity and symbiosis unravelled by metagenomics. J Appl Microbiol. 2017;123:2–17.

Gonçalves AT, Gallardo-Escárate C. Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss). J Appl Microbiol. 2017;122:1333–1347.

Ray AK, Ghosh K, Ringø E. Enzyme-producing bacteria isolated from fish gut:A review. Aquac Nutr. 2012;18:465–492.

Yan Q, Li J, Yu Y, Wang J, He Z, Van Nostrand JD, Kempher ML, WuL, Wang Y, Liao L, Li X, Wu S, Ni J, Wang C, Zhou J. Environmental filtering decreases with fish development for the assembly of gut microbiota. Environ Microbiol. 2016;18:4739–4754.

Feng Q, Chen WD, Wang YD. Gut microbiota:An integral moderator in health and disease. Front Microbiol. 2018;9:1–8.

Bhuyan P, Bordoloi R, Singh MK. Studies on digestive enzymes in different size groups of Channa aurantimaculata Musikasinthorn, 2000. Egypt J Aquat Biol Fish. 2022;26:243–255.

Kapoor BG, Smit H, Verighina IA. The alimentary canal and digestion in teleosts. In: Advances in marine biology. Elsevier. 1976;109–239.

Fange R, Grove D. Digestion in" Fish physiology" (ed. by WA Hoar, DJ Randoll and JR Brett). 8.

Smith LS. Digestive functions in teleost fishes. Fish Nutr. 1989;331–421.

Dhayalan A, Velramar B, Govindasamy B, Ramalingam KR, Dilipkumar A, Pachiappan P. Isolation of a bacterial strain from the gut of the fish, Systomus sarana, identification of the isolated strain, optimized production of its protease, the enzyme purification, and partial structural characterization. J Genet Eng Biotechnol. Epub ahead of print. 2022;20.

DOI:10.1186/s43141-022-00299-3

Rajan MR, Sabitha A. Isolation, identification, enzyme productivity and antibacterial activity of intestinal bacteria of Blue morph Maylandia lombardoi and its role on growth Aislamiento. Identificación, Productividad Enzimática y Actividad Antibacteriana de Bacterias Int. 2023;12:1–15.

Bentzon-Tilia M, Sonnenschein EC, Gram L. Monitoring and managing microbes in aquaculture – Towards a sustainable industry. Microb Biotechnol. 2016;9:576–584.

Giatsis C, Sipkema D, Ramiro-Garcia J, Bacanu GM, Abernathy J, Verreth J, Smidt H, Verdegem M. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci Rep. 2016;6:1–11.

Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature. 2016;535:94–103.

de Bruijn I, Liu Y, Wiegertjes GF, Raaijmakers JM. Exploring fish microbial communities to mitigate emerging diseases in aquaculture. FEMS Microbiol Ecol. 2018;94:1–12.

Fishelson L, Montgomery WL, Myrberg Jr AA. A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae:Teleostei) from the Red Sea. Science. 1985;(80)229:49–51.

Rimmer DW, Wiebe WJ. Fermentative microbial digestion in herbivorous fishes. J Fish Biol. 1987;31:229–236.

Clements KD, Sutton DC, Choat JH. Occurrence and characteristics of unusual protistan symbionts from surgeonfishes (Acanthuridae) of the Great Barrier Reef, Australia. Mar Biol. 1989;102:403–412.

Cahill MM. Bacterial flora of fishes:a review. Microb Ecol. 1990;19:21–41.

Clements KD. Endosymbiotic communities of two herbivorous labroid fishes, Odax cyanomelas and O. pullus. Mar Biol. 1991;109:223–229.

Rahmatullah SM, Beveridge MCM. Ingestion of bacteria in suspension Indian major carps (Catla catla, Labeo rohita) and Chinese carps (Hypophthalmichthys molitrix, Aristichthys nobilis). Hydrobiologia. 1993;264:79–84.

Luczkovich JJ, Stellwag EJ. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides:size-related changes in diet and microbial abundance. Mar Biol. 1993;116:381–388.

Ringø E, Strøm E, Tabachek J. Intestinal microflora of salmonids:a review. Aquac Res. 1995;26:773–789.

Ringø E, Gatesoupe FJ. Lactic acid bacteria in fish: A review. Aquaculture. 1998;160:177–203.

Bairagi A, Ghosh KS, Sen SK, Ray AK. Enzyme producing bacterial flora isolated from fish digestive tracts. Aquac Int. 2002;10:109–121.

Ramirez RF, Dixon BA. Enzyme production by obligate intestinal anaerobic bacteria isolated from oscars (Astronotus ocellatus), angelfish (Pterophyllum scalare) and southern flounder (Paralichthys lethostigma). Aquaculture 2003;227:417–426.

Fidopiastis PM, Bezdek DJ, Horn MH, Kandel J. Characterizing the resident, fermentative microbial consortium in the hindgut of the temperate-zone herbivorous fish, Hermosilla azurea (Teleostei:Kyphosidae). Mar Biol. 2006;148:631–642.

Izvekova GI, Izvekov EI, Plotnikov AO. Symbiotic microflora in fishes of different ecological groups. Biol Bull. 2007;34:610–618.

Yunzhang S, Hongling Y, Zechun L, Chang J, Ye JD. Gut microbiota of fast and slow growing grouper Epinephelus coioides. African J Microbiol Res. 2009;3:637–640.

Li H, Zheng Z, Cong-xin X, Bo H, Chao-Yuan W, Gang H. Isolation of cellulose—producing microbes from the intestine of grass carp (Ctenopharyngodon idellus). In:Chinese Fishes. Springer. 2008;131–135.

Nayak SK. Role of gastrointestinal microbiota in fish. Aquac Res. 2010;41:1553–1573.

Stone DAJ. Dietary carbohydrate utilization by fish. Rev Fish Sci. 2003;11:337–369.

Hemre G, Mommsen TP, Krogdahl Å. Carbohydrates in fish nutrition:effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr. 2002;8:175–194.

Rowland SJ. Review of aquaculture research and development of the Australian freshwater fish silver perch, Bidyanus bidyanus. J World Aquac Soc. 2009;40:291–324.

Tabachek J. Intestinal microflora of salmonids :A review. 1995;773–790.

Austin B. The bacterial microflora of fish, revised. Scientific World Journal. 2006;6:931–945.

Shcherbina M, Kazlawlene O. The reaction of the medium and the rate of absorption of nutrients in the intestine of carp. J Ichthyol. 1971;11:81–85.

Lindsay GJH, Harris JE. Carboxymethylcellulase activity in the digestive tracts of fish. J Fish Biol. 1980; 16:219–233.

Chakrabarti I, Gani MA, Chaki KK, Sur R, Mishra KK. Digestive enzymes in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comp Biochem Physiol -- Part A Physiol. 1995;112:167–177.

Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70:567–590.

Mo J, Yang T, Song X, Cheng J-A. Cellulase activity in five species of important termites in China. Appl Entomol Zool. 2004;39:635–641.

Saha, Ray A. Cellulase activity in rohu fingerlings. Aquac Int. 1998;6:281–291.

Ghosh K, Ray AK, Sen SK. Characterization of bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac. 2002;12:33–42.

Kar N, Ghosh K. Enzyme producing bacteria in the gastrointestinal tracts of Labeo rohita (Hamilton) and Channa punctatus (Bloch). Turkish J Fish Aquat Sci. 2008;120:115–120.

Mondal S, Roy T, Ray AK. Characterization and identification of enzyme-producing bacteria isolated from the digestive tract of bata, Labeo bata. J World Aquac Soc. 2010;41:369–377.

Saha S, Roy RN, Sen SK, Ray AK. Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquac. Res 2006;37:380–388.

Li H, Zheng Z, Cong-xin X, Bo H, Chao-yuan W, Ganh H. Isolation of cellulose-producing microbes from the intestine of grass carp (Ctenopharyngodon idellus). Environ Biol Fishes. 2009;86:131–135.

Mondal S, Roy T, Sen SK, Ray AK. Distribution of enzyme-producing bacteria in the digestive tracts of some freshwater fish. Acta Ichthyol Piscat. 2008;38:1–8.

Ray AK, Roy T, Mondal S, Ringoe E. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res. 2010;41:1462–1469.

Jiang Y, Caixia C, Yang G, Chen X, Xu L, Bao B. Cellulase-producing bacteria of Aeromonas are dominant and indigenous in the gut of Ctenopharyngodon idellus (Valenciennes). Aquac Res. 2011;42:499–505.

Das P, Mandal S, Khan A, Manna SK, Ghosh K. Distribution of extracellular enzyme-producing bacteria in the digestive tracts of 4 brackish water fish species. Turkish J Zool. 2014;38:79–88.

Augustine A, Joseph I. Four novel strains of cellulolytic symbiotic bacteria isolated and characterized from GI tract of marine fishes of various feeding habits. Biocatal Agric Biotechnol. 2018;16:706–714.

Peixoto SB, Cladera-Olivera F, Daroit DJ, Brandelli A. Cellulase-producing Bacillus strains isolated from the intestine of Amazon basin fish. Aquac Res. 2011;42:887–891.

Askarian F, Zhou Z, Olsen RE, Sigmund S, Ringo E. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture. 2012;326–329:1–8.

Dabrowski K, Glogowski J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia. 1977;54:129–134.

Hamid A, Sakata T, Kakimoto D. Microflora in the alimentary tract of grey mullet. IV. Estimation of enzyme activities of the intestinal bacteria. Bull Japanese Soc Sci Fish. 1979;45:99–106.

Trust TJ, Bull LM, Currie BR, Buckley JT. Obligate anaerobic bacteria in the gastrointestinal microflora of the grass carp (Ctenopharyngodon idella), goldfish (Carassius auratus), and rainbow trout (Salmo gairdneri). J Fish Res Board Canada. 1979;36:1174–1179.

Hoshino T, Ishizaki K, Sakamoto T, Kumeta H, Yumoto I, Matsuyama H, Ohgiya S. Isolation of a Pseudomonas species from fish intestine that produces a protease active at low temperature. Lett Appl Microbiol. 1997;25:70–72.

Banerjee G, Ray AK, Askarian F, Ringo E. Characterisation and identification of enzyme-producing autochthonous bacteria from the gastrointestinal tract of two Indian air-breathing fish. Benef Microbes. 2013;4:277–284.

Armada CD, Simora RMC. Isolation and identification of protease-producing Pseudomonas sp. PD14 in the gut of rabbitfish Siganus guttatus (Bloch 1787). Asian Fish Sci. 2016;29:82–95.

Dey A, Ghosh K, Hazra N. Evaluation of extracellular enzyme-producing autochthonous gut bacteria in walking catfish, Clarias batrachus (L.). J Fish. 2016;4:345.

Gatesoupe FJ, Infante JLZ, Cahu C, Quazuguel P. Early weaning of seabass larvae, Dicentrarchus labrax: The effect on microbiota, with particular attention to iron supply and exoenzymes. Aquaculture. 1997;158:117–127.

Morita Y, Hasan Q, Sakaguchi T, Murakami Y, Yokoyama K. Tamiya E. Properties of a cold-active protease from psychrotrophic Flavobacterium balustinum P104. Appl Microbiol Biotechnol. 1998;50:669– 675.

Ghosh K, Sen SK, Ray AK. Characterization of Bacilli isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. J Appl Aquac. 2002;12:33–42.

Belchior SGE, Vacca G. Fish protein hydrolysis by a psychrotrophic marine bacterium isolated from the gut of hake (Merluccius hubbsi). Can J Microbiol. 2006;52:1266–1271.

Skrodenyte-Arbaciauskiene V. Enzymatic activity of intestinal bacteria in roach Rutilus rutilus L. Fish Sci. 2007;73:964–966.

Esakkiraj P, Immanuel G, Sowmya SM, Iyapparaj P, Palavesam A. Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess Technol. 2009;2:383–390.

Askarian F, Zhou Z, Olsen RE, Erik R, Sigmund S. Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture. 2012;326:1–8.

Olsen RE, Ringø E. Lipid digestibility in fish. Recent Res Dev Lipid Res. 1997;1:199–264.

Mohan TS, Palavesam A, Ajitha RL. Optimization of lipase production by vibrio Sp . -A fish gut isolate. Eur J Zool Res. 2012;1:23–25.

Henderson RJ, Millar RM. Characterization of lipolytic activity associated with a Vibrio species of bacterium isolated from fish inte.stines. J Mar Biotechnol 1998;6:168–173.

German DP, Horn MH, Gawlicka A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): Ontogenetic, dietary, and phylogenetic effects. Physiol Biochem Zool. 2004;77:789–804.

German DP, Nagle BC, Villeda JM, Ruiz A, Thomson A, Balderas SC, Evans D. Evolution of herbivory in a carnivorous clade of minnows (Teleostei: Cyprinidae):Effects on gut size and digestive physiology. Physiol Biochem Zool. 2010;83:1–18.

Skea GL, Mountfort DO, Clements KD. Gut carbohydrases from the New Zealand marine herbivorous fishes Kyphosus sydneyanus (Kyphosidae), Aplodactylus arctidens (Aplodactylidae) and Odax pullus (Labridae). Comp Biochem Physiol - B Biochem Mol Biol. 2005;140:259–269.

Skea GL, Mountfort DO, Clements KD. Contrasting digestive strategies in four New Zealand herbivorous fishes as reflected by carbohydrase activity profiles. Comp Biochem Physiol - A Mol Integr Physiol. 2007;146:63–70.

Das KM, Tripathi SD. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture. 1991;92:21–32.

Sugita H, Kawasaki J, Deguchi Y. Production of amylase by the intestinal microflora in cultured freshwater fish. Lett Appl Microbiol. 1997;24:105–108.

Skrodenyte-Arbačiauskiene V. Enzymatic activity of intestinal bacteria in roach Rutilus rutilus L. Fish Sci. 2007;73:964–966.

Lazado CC, Caipang CMA, Kiron V. Enzymes from the gut bacteria of Atlantic cod, Gadus morhua and their influence on intestinal enzyme activity. Aquac Nutr. 2012;18:423–431.

Dutta D, Ghosh K. Screening of extracellular enzyme-producing and pathogen inhibitory gut bacteria as putative probiotics in mrigal, Cirrhinus mrigala (Hamilton, 1822). Int J Fish Aquat Stud. 2015;2:310–318.

Gisbert E, Nolasco H, Solovyev M. Towards the standardization of brush border purification and intestinal alkaline phosphatase quantification in fish with notes on other digestive enzymes. Aquaculture. 2018;487:102–108.

Okutani, K. Studies of chitinolytic systems in the digestive tracts of Lateolabrax japonicus. Bull Misaki Mar Biol Institute, Kyoto Uni. 1966;10:01.01.47.

Fagbenro OA, Adedire CO, Aiyegbeni ML. Food composition and digestive enzymes in the gut of the African electric catfish, Malapterurus electricus (Gmelin 1789) (Malapteruridae). Trop Zool. 2001;14:1-6.

Sakata T, Okabayashi J, Kakimoto D. Variations in the intestinal microflora of Tilapia reared in fresh and sea water. Bull Japanese Soc Sci Fish. 1980;46:313–317.

Sugita H, Yamada S, Konagaya Y, Deguchi Y. Production of β-N-acetylglucosaminidase and chitinase by aeromonas species isolated from river fish. Fish Sci. 1999;65:155–158.

Sugita H, Ito Y. Identification of intestinal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin. Lett Appl Microbiol. 2006; 43:336–342.

MacDonald NL, Stark JR, Austin B. Bacterial microflora in the gastro-intestinal tract of Dover sole (Solea solea L.), with emphasis on the possible role of bacteria in the nutrition of the host. FEMS Microbiol Lett 1986;35:107–111.

Sakata T, Koreeda Y. A numerical taxonomic study of the dominant bacteria isolated from tilapia (Sarotherodon niloticus) intestines. Bull Japanese Soc Sci Fish.

Itoi S, Okamura T, Koyama Y, Sugita H. Chitinolytic bacteria in the intestinal tract of Japanese coastal fishes. Can J Microbiol. 2006;52:1158–1163.

Fernandez RD, Tendencia EA, Leano EM, Duray MN. Bacterial flora of milkfish, Chanos chanos, eggs and larvae. Fish Pathol. 1996;31:123–128.

Smith L. Digestive functions in teleost fish. 2nd ed. Academic Press; 1989.

Pemberton JM, Kidd SP, Schmidt R. Secreted enzymes of aeromonas. FEMS Microbiol Lett. 1997;152:1–10.

Yanbo W, Zirong X. Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Technol. 2006;127:283–292.

Nayak SK, Swain P, Mukherjee SC. Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham.). Fish Shellfish Immunol. 2007;23:892–896.

Ghosh S, Sinha A, Sahu C. Dietary probiotic supplementation on growth and health of live-bearing ornamental fishes. Aquac Nutr. 2008;14:289–299.

Sun Y, Yang H, Ling Z, Chang J, Ye JD. Gut microbiota of fast and slow growing grouper. African J Microbiol Res. 2009;3:713–720.

Cabello E. Minireview A review on the interactions between gut microbiota and innate immunity of ¢ sh. Epub ahead of print 2007.

DOI:10.1111/j.1574-695X.2007.00343.x.

Sullam KE, Essinger SD, Lozupone CA, O'Connor MP, Rosen GL, Knight R, Kilham SS, Russel JA. Environmental and ecological factors that shape the gut 2 bacterial communities of fish:a meta-analysis - Supplementary. PubMed Cent. 2009;21:1– 16.

Brugman S, Liu KY, Kortleve DL, Samsom JN, Furuta GT, Renshaw SA, Willemsen R, Nieuwenhuis EE. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota. YGAST. 2009;137:1757-1767.e1.

Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simo-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitja-Bobadilla A, Perez-Sanchez J. Under control: How a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome. 2017;5:164.

He S, Wang Q, Li S, Ran C, Guo X, Zhang Z, Zhou Z. Antibiotic growth promoter olaquindox increases pathogen susceptibility in fish by inducing gut microbiota dysbiosis. Sci China Life Sci. 2017;60:1260–1270.

Nayak SK. Role of gastrointestinal microbiota in fish. Aquac Res. 2010;41:1553–1573.

Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K. Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci U S A. 2011;108:4570–4577.

Askarian F, Kousha A, Salma W, Ringo E. The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquac Nutr. 2011;17:488–497.

Abasali H, Mohammad S. Dietary prebiotic immunogen supplementation in reproductive performance of platy (Xiphophorus maculatus). Vet Res. 2011;4:66–70.

Avella MA, Place A, Du S, William E, Stefania S, Zohar Y, Carnevali O. Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems. 2012;7:1–10.

Carnevali O, Avella MA, Gioacchini G. Effects of probiotic administration on zebrafish development and reproduction. Gen Comp Endocrinol. 2012;188:297–302.

Ni J, Yan Q, Yu Y, Zhang T. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87:704–714.

Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe. 2012;12:277–288.

Wang W, Wu S, Zheng Y, Cheng Y, Li W, Zou H, Wang G. Characterization of the bacterial community associated with early-developmental stages of grass carp (Ctenopharyngodon idella). Aquac Res. 2015;46:2728–2735.

Sequeiros C, Garcés ME, Vallejo M, Marguet ER, Olivera NL. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol. 2015;197:449–458.

Bindiya ES, Tina KJ, Raghul SS, Bhat SG. Characterization of deep sea fish gut bacteria with antagonistic potential, from Centroscyllium fabricii (Deep Sea Shark). Probiotics Antimicrob Proteins. 2015;7:157–163.

Hamdan AM, Mahmoud MM. Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). Epub ahead of print 2016. DOI:10.1111/jam.13081.

Tan LTH, Chan KG, Lee LH, Goh BH. Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 2016;7:1–8.

Allameh SK, Yusoff FM, Ringø E, Daud H, Saad C, Ideris A. Effects of dietary mono‐and multiprobiotic strains on growth performance, gut bacteria and body composition of J avanese carp (Puntius gonionotus, B leeker 1850). Aquac Nutr. 2016;22:367–373.

Doloi D, Haloi DJ. Microbial isolation from the gut of Channa punctata (Goroi fish) and study of their glycosidic activity. 2019;7:735–740.

Kiron AP V, Watanabe SST. Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss ( Walbaum ). 2010;969–977.

Lara-flores M, Olvera-novoa MA. The use of lactic acid bacteria isolated from intestinal tract of Nile tilapia (Oreochromis niloticus), as growth promoters in fish fed low protein diets Uso de bacterias ácido lácticas aisladas del tracto intestinal de tilapia nilótica ( Oreochromis ni). 2013;41:490–497.

Nandi A, Banerjee G. Evaluation of In Vivo Probiotic Efficiency of Bacillus amyloliquefaciens in Labeo rohita Challenged by Pathogenic Strain of Aeromonas hydrophila MTCC 1739. Epub ahead of print 2017. DOI:10.1007/s12602-017-9310-x.

Dey A, Ghosh K, Hazra N. Effects of probiotics-encapsulated live feed on growth and survival of juvenile Clarias batrachus (Linnaeus, 1758) after differential exposure to pathogenic bacteria. SAARC J Agric. 2018;16:105–113.

Porubcan RS. Reduction of ammonia nitrogen and nitrite in tanks of penaeus-monodon using floating biofilters containing processed diatomaceous earth media pre-inoculated with nitrifying bacteria. Porubcan, RS; 1991.

Sunitha K, Krishna PV. Efficacy of probiotics in water quality and bacterial biochemical characterisation of fish ponds. Int J Curr Microbiol Appl Sci. 2016;5:30–37.

Wang, Wang Y. Adavnce in the mechanisms and application of microecologies in aquaculture. Prog Vet Med. 2008;29:72–75.

Sánchez-ortiz AC, Luna-gonzález A, Campa-córdova ÁI, Escamilla-montes R, Flores-Miranda C, Mazon-Suastegui JM. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. 2015;43:123–136.

Iehata S, Akter S, Kader A. Effects of host gut-derived probiotic bacteria on gut morphology , microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. 2018;9:53–61.

Sugita H, Miyajima C, Deguchi Y. The vitamin B12-producing ability of the intestinal microflora of freshwater fish. Aquaculture. 1991;92:267–276.

Rai AK, Jini R, Swapna HC, Sachindra NM, Bhaskar N, Baskaran V. Application of native lactic acid bacteria (LAB) for fermentative recovery of lipids and proteins from fish processing wastes: bioactivities of fermentation products. J Aquat Food Prod Technol. 2011; 20:32–44.

Mandal S, Ghosh K. Isolation of tannase‐producing microbiota from the gastrointestinal tracts of some freshwater fish. J Appl Ichthyol. 2013;29:145–153.