HYPOGLYCEMIC AND ANTIOXIDANT POTENTIAL OF 1-DEOXYNOJIRIMYCIN IN HIGH GLUCOSE-INDUCED EXPERIMENTAL DIABETIC TILAPIA (Oreochromis niloticus)

R. LATHARAJA

PG and Research Department of Zoology, N. K. R. Government Arts College for Women, Namakkal - 637001, Tamil Nadu, India.

G. SHARMILA BANU *

PG and Research Department of Zoology, N. K. R. Government Arts College for Women, Namakkal - 637001, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Abstract

The objective of the study was to assess 1-deoxynojirimycin's effects on high glucose levels and the tilapia Oreochromis niloticus (O. niloticus) propensities for hypoglycemia and antioxidant activity. O. niloticus' hypoglycemia was induced by adding glucose to the water of the fish pond. Glucose-given fishes were given either glibenclamide or the DJN. It was observed that DJN dissolves at doses of 10, 20 mg/kg b.w or glibenclamide (0.6 mg/kg b.w) tested in the fish's water. In comparison to the control group, the hypoglycemic-induced tilapia had greater blood sugar levels. After the induction of hypoglycemia, the blood glucose levels in tilapia were greater than in the control group for 90 minutes. The serum glucose level of the hypoglycemic tilapia was reduced by DJN or glibenclamide in a dose-dependent manner until it was comparable to that of the control group. According to the findings, DJN possessed anti-hypoglycemic action. This is the first study that we are aware of on the use of fish as a model for diabetes to test DJN or glibenclamide.

Keywords: Hypoglycemia, antioxidant potential, Oreochromis niloticus, DJN, glibenclamide, diabetes mellitus


How to Cite

LATHARAJA, R., & BANU, G. S. (2022). HYPOGLYCEMIC AND ANTIOXIDANT POTENTIAL OF 1-DEOXYNOJIRIMYCIN IN HIGH GLUCOSE-INDUCED EXPERIMENTAL DIABETIC TILAPIA (Oreochromis niloticus). UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(16), 7–14. https://doi.org/10.56557/upjoz/2022/v43i163135

Downloads

Download data is not yet available.

References

World Health Organization. Fact sheet n° 312 [online]; 2011.

Available:http://www.who.int/mediacentre/factsheets/fs312/Retrieved.

Vats V, Yadav SP, Grover JK. Ethanolic extract of Ocimum sanctum leaves partially attenuates streptozotocin-induced alterations in glycogen content and carbohydrate metabolism in rats. J Ethnopharmacol. 2004;90(1):155-60.

Available:https://doi.org/10.1016/j.jep.2003.09.034

Gopal SS, Lakshmi MJ, Sharavana G, Sathaiah G, Sreerama YN, Baskaran V. Lactucaxanthin a potential antidiabetic carotenoid from lettuce (Lactuca sativa) inhibits α-amylase and α-glucosidase activity in vitro and in diabetic rats. Food Funct. 2017;8(3):1124-31.

Available:https://doi.org/10.1039/c6fo01655c

Shi GJ, Zheng J, Wu J, Qiao HQ, Chang Q, Niu Y et al. Beneficial effects of Lycium barbarum polysaccharide on spermatogenesis by improving antioxidant activity and inhibiting apoptosis in streptozotocin-induced diabetic male mice. Food Funct. 2017;8(3):1215-26.

Available:https://doi.org/10.1039/c6fo01575a

Prince PSM, Kamalakkannan N, Menon VP. Antidiabetic and antihyperlipidemic effect of alcoholic Syzigiumcumini seeds in alloxan induced diabetic albino rats. J Ethnopharmacol. 2004;91(2-3):209-13.

Available:https://doi.org/10.1016/j.jep.2003.11.001

Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ et al. Nutrition ther-apy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37;Suppl 1:S120-43.

Available:https://doi.org/10.2337/dc14-S120

Jonker JT, Wijngaarden MA, Kloek J, Groeneveld Y, Gerhardt C, Brand R, et al. Effects oflow doses of casein hydrolysate on post-challenge glucose and insu-lin levels. Eur J Intern Med. 2011;22(3):245-8.

Available:https://doi.org/10.1016/j.ejim.2010.12.015

Nazir N, Zahoor M, Nisar M, Khan I, Karim N, Abdel-Halim H et al. Phytochemical analysis and antidiabetic potential of Elaeagnus umbellata (Thunb.) in streptozotocin-induced diabetic rats: pharmacological and computational approach. BMC Complement Altern Med. 2018;18(1):332.

Available:https://doi.org/10.1186/s12906-018-2381-8

JV, Kumarappan M, Shanmuganathan P, Vinayagam SI, Narayanamurthy U. Antidiabetic activity of Manomani chooranam aqueous extract on female Wistar albino rats, S. A. Int J Basic Clin Pharmacol. 2019;2153:8(9).

Available:https://doi.org/10.18203/2319-2003.ijbcp20194131.

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas. 9th ed. Diabetes Research and Clinical Practice. 2019;157:107843.

Available:https://doi.org/10.1016/j.diabres.2019.107843.

Iwase Y, Kamei N, Takeda-Morishita M. Antidiabetic effects of omega-3 polyunsaturated fatty acids: from mechanism to therapeutic possibilities. Pharmacol Pharm. 2015;6:190-200.

Available:https://doi.org/10.4236/pp.2015.63020.

Gandhi GR, Sasikumar P. Antidiabetic effect of Merremia emarginata Burm. F. in streptozotocin induced diabetic rats. Asian Pac J Trop Biomed. 2012;2(4):281-6.

Available:https://doi.org/10.1016/S2221-1691(12)60023-9

Liu W, Wei Z, Ma H, Cai A, Liu Y, Sun J et al. Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct. 2017;8(2):757-66.

Available:https://doi.org/10.1039/c6fo01360k

Ramachandran S, Naveen KR, Rajinikanth B, Akbar M, Rajasekaran A. Antidiabetic, antihyperlipidemic and in vivo antioxidant potential of aqueous extract of Anogeissus latifolia bark in type 2 diabetic rats. Asian Pac J Trop Dis. 2012;2:S596-602.

Available:https://doi.org/10.1016/S2222-1808(12)60229-1.

Siccardi AJ 3rd, Garris HW, Jones WT, Moseley DB, D’Abramo LR, Watts SA. Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish. 2009 September;6(3):275-80.

Available:https://doi.org/10.1089/zeb.2008.0553

Capiotti KM, Antonioli R, Jr., Kist LW, Bogo MR, Bonan CD, Da Silva RS. Persistent impaired glucose metabolism in a zebrafish hyperglycemia model. Comp Biochem Physiol B Biochem Mol Biol. 2014 May;171:58-65.

Available:https://doi.org/10.1016/j.cbpb.2014.03.005

Pedroso GL, Hammes TO, Escobar TD, Fracasso LB, Forgiarini LF, da Silveira TR. Blood collection for biochemical analysis in adult zebrafish. J Vis Exp. 2012;63(63):e3865.

Available:https://doi.org/10.3791/3865

Drabkin DL, Austin JH. Spectrophotometric constants for common haemoglobin derivatives inhuman, dog and rabbit blood. J Biol Chem. 1932;98(2):719-33.

Available:https://doi.org/10.1016/S0021-9258(18)76122-X.

Sudhakar Nayak S, Pattabiraman TN. A new colorimetric method for the estimation of glycosylated haemoglobin. Clin Chim Acta. 1981;109(3):267-74.

Available:https://doi.org/10.1016/0009-8981(81)90312-0.

Bannon P. Effect of pH on the elimination of the labile fraction of glycosylated haemoglobin. Clin Chem. 1982;28(10): 2183.

Available:https://doi.org/10.1093/clinchem/28.10.2183a

Du Vigneaud V, Karr WG. Carbohydrate utilization: I. J Biol Chem. 1925;66(1):281-300.

Available:https://doi.org/10.1016/S0021-9258(18)84814-1.

Nichans WG, Samuelson B. Formation of MDA from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem. 1968;6:126-30.

Jiang ZY, Hunt JV, Wolff SP. Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem. 1992;202(2):384-9.

Available:https://doi.org/10.1016/0003-2697(92)90122-n

Ravin HA. An improved colorimetric enzymatic assay of ceruloplasmin. J Lab Clin Med. 1961;58:161-8.

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70-7.

Available:https://doi.org/10.1016/0003-9861(59)90090-6

Kakkar P, Das B, Viswanathan PN. A modified spectrophotometric assay of SOD. Indian J Biochem Biophys. 1978;21:130-2.

Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47(2):389-94.

Available:https://doi.org/10.1016/0003-2697(72)90132-7

Arokiyaraj S, Balamurugan R, Augustian P. Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2011;1(5):386-90.

Available:https://doi.org/10.1016/S2221-1691(11)60085-3

Setacci C, de Donato G, Setacci F, Chisci E. Diabetic patients: epidemiology and global impact. J Cardiovasc Surg (Torino). 2009;50(3):263-73.

Patel DK, Kumar R, Prasad SK, Sairam K, Hemalatha S. Antidiabetic and in vitro antioxidant potential of Hybanthus enneaspermus (Linn) F. Muell in streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 2011;1(4):316-22

Suganya S, Narmadha R, Gopalakrishnan VK, Devaki K. Hypoglycemic effect of Costus pictus D. Don on alloxan induced type 2 diabetes mellitus in albino rats. Asian Pac J Trop Dis. 2012;2(2):117-23.

Available:https://doi.org/10.1016/S2222-1808(12)60028-0.

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 2008;51(2):216-26.

Available:https://doi.org/10.1007/s00125-007-0886-7

Gleeson M, Connaughton V, Arneson LS. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol. 2007;44(3):157-63.

Available:https://doi.org/10.1007/s00592-007-0257-3

Larsen ML, Hørder M, Mogensen EF. Effect of long-term monitoring of glycosylated haemoglobin levels in insulin-dependent diabetes mellitus. N Engl J Med. 1990;323(15):1021-5.

Available:https://doi.org/10.1056/NEJM199010113231503

Rannels DE, Marker DE, Morgan HE. Biochemical actions of hormones. In: Litwack G, editor, 1. Academic Press. 1997;135-95.

Dighe RR, Rojas FJ, Birnbaumer L, Garber AJ. Glucagonstimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus. J Clin Invest. 1984;73(4):1013-23.

Available:https://doi.org/10.1172/JCI111286

Ganesan K, Xu B. Anti-diabetic effects and mechanisms of dietary polysaccharides. Molecules. 2019 July 13;24(14):2556.

Available:https://doi.org/10.3390/molecules24142556

Gillespie AL, Green BD. The bioactive effects of casein proteins on enteroendocrine cell health, proliferation and incretin hormone secretion. Food Chem. 2016;211: 148-59.

Available:https://doi.org/10.1016/j.foodchem.2016.04.102

Gong H, Gao J, Wang Y, Luo QW, Guo KR, Ren FZ et al. Identification of novel peptides from goat milk casein that ameliorate high-glucose-induced insulin resistance in HepG2 cells. J Dairy Sci. 2020;103(6): 4907-18.

Available:https://doi.org/10.3168/jds.2019-17513

Eames SC, Philipson LH, Prince VE, Kinkel MD. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish. 2010;7(2):205-13.

Available:https://doi.org/10.1089/zeb.2009.0640