Published: 2022-12-09

DOI: 10.56557/upjoz/2022/v43i233247

Page: 25-36


Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.


Department of Zoology, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.

*Author to whom correspondence should be addressed.


The use of nanoparticles in various fields is increasing due to the fact that nanoparticles exhibit some special properties compared to common bulk materials. At present different types of nanoparticles are used in various household items, pharmaceutical and agricultural goods and even in space research. Among the various types of nanoparticles, metal nanoparticles have attracted the scientists in many ways. Due to its abounding use at industrial level as well as in medical devices, the particles at the nanoscale size level are causing detrimental effect on environment as well as on biological system. It has been already found that metal ions are toxic to fishes. Scientists have tried to find out whether metal nanoparticles are toxic to the fish body system or not. Reptiles, birds and mammals, especially humans, consume fish directly as food. So toxic metal nanoparticles from fish bodies can directly enter those organisms through the food chain. Since fish occupy an important place in aquatic ecosystems, there is an urgent need to understand the adverse effects of metal nanoparticles on fish. In this review we have tried to review the kind of ongoing research in this area, the key findings and the data gaps, where more research is needed to fill in.

Keywords: Aquatic organisms, ecotoxicity, fish, nanoparticle, toxicity

How to Cite



Download data is not yet available.


Breznan D, Das DD, MacKinnon-Roy C, Bernatchez S, Sayari A., Hill M., et al . Physicochemical properties can be key determinants of mesoporous silica nanoparticle potency in vitro. ACS nano. 2018;12(12): 12062-12079.

Nanodatabase Consumer Products—The Nanodatabase. Available online: Hashsection (accessed on 30th October, 2022).

Pulit-Prociak J, Banach M Silver nanoparticles—a material of the future? Open Chem, 2016;14(1):76–91.

Available: https:// doi. org/ 10. 1515/chem- 2016- 0005.

Shaw BJ, Handy RD. Physiological effects of nanoparticles on fish: a comparison of nanometals versus metal ions. Environment international. 2011;37(6):1083-1097.

Tolaymat T, El Badawy A, Genaidy A, AbdelraheemW, &Sequeira R. Analysis of metallic and metal oxide nanomaterial environmental emissions. Journal of cleaner production. 2017;143:401-412.

Bundschuh M, Filser J, Lüderwald S, McKee, M S, Metreveli G, Schaumann GE et al. Nanoparticles in the environment: where do we come from, where do we go to?. Environmental Sciences Europe. 2018;30(1):1-17.

Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, &Libralato G. Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research, 2017;24(21):17326-17346.

Browning LM, Huang T, Xu XHN. Real-time in vivo imaging of size-dependent transport and toxicity of gold nanoparticles in zebrafish embryos using single nanoparticle plasmonic spectroscopy. Interface Focus. 2013;3; 20120098.

Li YF, & Chen C. Fate and toxicity of metallic and metal‐containing nanoparticles for biomedical applications. Small. 2011;7(21): 2965-2980.

Adewale OB, Davids H, Cairncross L, Roux S. Toxicological Behavior of Gold Nanoparticles on Various Models: Influence of Physicochemical Properties and Other Factors. Int. J. Toxicol. 2019;38:357–384.

Jia YP, Ma, BY, Wei XW, Qian ZY. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017;28:691–702.

Browning LM, Lee KJ, Huang T, Nallathamby, PD, Lowman J.E, Xu, XN. Random walk of single gold nanoparticles inzebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale. 2009;1: 138–152.

Asharani PV, Lianwu Y, Gong Z. and Valiyaveettil S, Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos, Nanotoxicology. 2011;5(1): 43–54

Truong L, Saili KS, Miller JM, Hutchison JE. and Tanguay RL., Persistent adult zebrafish behavioral deficits results from acute embryonic exposure to gold nanoparticles,” Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 2012;155(2): 269–274.

DOI: 09.006,

Mesquita B, Lopes I, Silva S, Bessa MJ, Starykevich M. and Carneiro J., Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio), Journal of Toxicology and Environmental Health Part A Current Issues, 2017; 80: 672–680


Kim KT, Zaikova T, Hutchison JE. and Tanguay R.L., Gold nanoparticles disrupt zebrafish eye development and pigmentation, Toxicological Sciences. 2013;133(2):275–288

Wang Z, Xie D, Liu H, Bao Z, Wang Y. Toxicity assessment of precise engineered gold nanoparticles with different shapes in zebrafish embryos. RSC Adv., 2016; 6; 33009–33013.

Truong L, Tilton SC, Zaikova T, Richman E, Waters KM, Hutchison J.E, Tanguay, RL Surface functionalities of gold nanoparticles impact embryonic gene expression responses. Nanotoxicology, 2013; 7: 192–201.

Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology, 2015; 9: 71– 80.

Dayal N, Thakur M, Patil P, Singh D, Vanage G, Joshi, DS. Histological and genotoxic evaluation of gold nanoparticles inovarian cells of zebrafish (Danio rerio). J. Nanoparticle Res. 2016; 18:291.

Syrvatka V, Rozgoni I, Slyvchuk Y, Milovanova G, Hevkan I, Matyukha I. Effects of Silver nanoparticles in Solution and liposomal form on some blood Parameters in female rabbits during fertilization and early embryonic development. Journal of microbiology, biotechnology and food sciences 2014; 3 (4); 274-278. ICID: 1092144

Baalousha M, Lead J. Characterization of nanomaterials in complex environmental and biological media. Elsevier 2015.

Caloudova H, Hodkovicova, N, Sehonova P, Blahova J and Marsalek B, The effect of silver nanoparticles and silver ions on zebrafish embryos (Danio rerio), Neuroendocrinol Lett, 2018;39(4):299–304.

Cambier S, Røgeberg M and GeorgantzOpoulou Anastasia, Fate and effects of silver nanoparticles on early life-stage development of zebrafish (Danio rerio) in comparison to silver nitrate, Science of The Total Environment, 2018;610–611: 972-982

Seyedi J, Tayemeh MB, Esmaeilbeigi M, Joo HS, Langeroudi EK, Banan A, Johari SA, Jami MJ Fatty acid alteration in liver, brain, muscle, and oocyte of zebrafish (Danio rerio) exposed to silver nanoparticles and mitigating influence of quercetin- supplemented diet. Environmental Research., 2021;194:110611.

Ramachandran R, Krishnaraj C, Sivakumar AS, Prasannakumar P, Abhay Kumar, V.K, Shim KS, Song CG, Yun SI. Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;73: 674–683.

Rajkumar KS, Kanipandian N, Thirumurugan R Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles- exposed freshwater fish Labeorohita. ApplNanosci 2016;6(1):19–29

Sharma N, Rather MA, Ajima MNO, Gireesh-Babu P, Kumar K, Sharma R (2016) Assessment of DNA damage and molecular responses in Labeorohita (Hamilton, 1822) following short-term exposure to silver nanoparticles. Food Chem Toxicol, 96:122– 132.

DOI:10. 1016/j.fct.2016.06.020.

Xiang QQ, Wang D, Zhang JL, Ding CZ, Luo X, Tao J, Ling J, Shea D, Chen LQ (). Effect of silver nanoparticles on gill membranes of common carp: Modification of fatty acid profile, lipid peroxidation and membrane fluidity. Environmental Pollution, 2020;256: 113504.

Jang MH, Kim WK, Lee SK, Henry TB, Park JW.. Uptake, tissue distribution, and depuration of total silver in common carp (Cyprinus carpio) after aqueous exposure to silver nanoparticles. Environmental Science and Technology, 2014;48(19): 11568-74.

DOI: 10.1021/es5022813

Shaluei F, Hedayati A, Jahanbakhshi A, Kolangi H, Fotovat M. Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices insilver carp (Hypoph-thalmichthys molitrix). Human& Experimental Toxicology. 2013; 32(12): 1270-7.

DOI: 10.1177/0960327113485258.

Taju G, Majeed AS, Nambi KS, Sahul Hameed AS. In vitro assay for the toxicityof silver nanoparticles using heart and gill cell lines of Catlacatla and gill cell line of Labeorohita. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 2014;161:41-52.

DOI: 10.1016/j.cbpc.2014.01.007

Ostaszewska T, Śliwiński J, Kamaszewski M, Sysa P, Chojnacki M Cytotoxicity of silver and copper nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes. Environmental Science and Pollution Research. 2018;25(1):908-915.

Shabrangharehdasht M, Mirvaghefi A, Farahmand H Effects of nanosilver on hematologic, histologic and molecular parameters of rainbow trout (Oncorhynchus mykiss). Aquatic Toxicology. 2020;225: 105549.

Bilberg K, Doving KB, Beedholm K, Baatrup E. Silver nanoparticles disrupt olfaction in Crucian carp (Carassius carassius) and Eurasian perch (Percafluviatilis). Aquatic Toxicology. 2011;104:145–152.

DOI: 10.1016/j.aquatox.2011. 04.010.

Kim JY, Kim KT, Lee BG, Lim BJ, Kim SD. Developmental toxicity of Japanese medaka embryos by silver nanoparticles and released ions in the presence of humic acid. Ecotoxicology and Environmental Safety, 2013; 92(1): 57-63.

DOI: 10.1016/j. ecoenv.2013.02.004.

Cho JG, Kim KT, Ryu TK, Lee JW, Kim JE, Kim J, Lee BC, Jo EH, Yoon J, Eom IC, Choi K, Kim P. Stepwise Embryonic Toxicity of Silver Nanoparticles on Oryziaslatipes. BioMed Research International. 2013;Article ID 494671:7.

Available:http:// dx.

Hawkins AD, Thornton C, Kennedy AJ, Bu K, Cizdziel J, Jones BW, Steevens JA, Willett KL. Gill histopathologies following exposure to nanosilver or silver nitrate. Journal of Toxicology and Environmental Health A 2015; 78(5): 301-15.

DOI: 10.1080/15287394.2014.971386.

Salem IA, Shaltout M.H, Zaki AB. Homogeneous and heterogeneous catalytic oxidation of some azo dyes using copper (II) ions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019; 227: 117618.

Gupta N, Siddique R. Utilization of Copper Slag in Self-compacting Concrete— Strength and Permeation Properties. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 544–551.

Tesser ME, De Paula AA, RissoWE, Monteiro RA, Pereira, ADES, FracetoLF, Martinez, CBDR. Sublethal effects of waterborne copper and copper nanoparticles on the freshwater Neotropical teleost Prochiloduslineatus: A comparative approach. Sci. Total. Environ. 2020; 704: 135332.

Noureen A, Jabeen F, A Tabish T, Ali M, Iqbal, R, Yaqub S, Chaudhry, AS. Histopathological changes and antioxidant responses in common carp (Cyprinus carpio) exposed to copper nanoparticles. Drug Chem. Toxicol. 2019; 1–8.

Aghamirkarimi S, Mashinchian Moradi, A, Sharifpour I, Jamili S, Ghavam Mostafavi,PE Effect of copper nanoparticles in the Caspian Roach (Rutillusrutilluscaspicus), changing antioxidant activities and liver histopathology. Iran. Sci. Fish. J. 2019;27:125–134.

Wang T, Wen X, Hu Y, Zhang X, Wang D, Yin, S. Copper nanoparticles induced oxidation stress, cell apoptosis and immune response in the liver of juvenile Takifugu fasciatus. Fish Shellfish. Immunol. 2019;84:648–655.

Tunçsoy M, Erdem C. Copper Accumulation in Tissues of Oreochromis niloticus Exposed to Copper Oxide Nanoparticles and Copper Sulphate with Their Effect on Antioxidant Enzyme Activities in Liver. Water Air Soil Pollut. 2018;229:269.

Vajargah MF, Yalsuyi AM, Sattari M, Proki´c, M.D.; Faggio, C. Eeffcts of Copper Oxide Nanoparticles (CuO-NPs) on Parturition Time, Survival Rate and Reproductive Success of Guppy Fish, Poecilia reticulata. J. Clust. Sci. 2019;31:499–506.

Al Ghais S, Bhardwaj V, Kumbhar P, Al Shehhi O. Effect of copper nanoparticles and organometallic compounds (dibutyltin) on tilapia fish. J. Basic Appl. Zool. 2019;80:32.

Thangavel L, Subash C.B. Gopinath, 1 - Introduction to nanoparticles and analytical devices, Editor(s): Subash C.B. Gopinath, Fang Gang, Nanoparticles in Analytical and Medical Devices, Elsevier. 2021:1-29.

ISBN 9780128211632,

Available: 10.1016/B978-0-12-821163-2.00001-7.

Liu J, Fan D, Wang L, Shi LI, Ding J, Chen Y, Shen S. Effects of ZnO, CuO, Au, and TiO2 nanoparticles on Daphnia magna and early life stages of zebrafish Danio rerio. Environment Protection Engineering. 2014;40(1).


Subashkumar S, Selvanayagam M. First report on: Acute toxicityand gill histopathology of fresh water fish Cyprinus carpio exposed to Zincoxide (ZnO) nanoparticles. International Journal of Scientific and Research Publications. 2014;4(3):1-4.

Alkaladi A, Afifi M, Youssef Y, Osama M, Zinada A. Ultra structure alteration of sublethal concentrations of zinc oxide nanoparticals on Nil Tilapia (Oreochromis niloticus) and the protective effects of vitamins C and E. Life Sciences Journal, 2014;11(10): 257-262.

Alkaladi A, Afifi M, Ali H, Saddick S. Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi Journal of Biological Sciences. 2020;27(5): 1296-1301.

Vidya PV, Chitra KC. Aluminium oxide nanoparticles induced irrevocable damages in gill, liver and brain tissues of the freshwater Fish, Oreochromis mossambicus (Peters, 1852). Int. J. Fish. Aquat. Res, 2018;3:13-17.

Murali, M., Athif, P., Suganthi, P., Bukhari, A. S., Mohamed, H. S., Basu, H., & Singhal, R. K. Toxicological effect of Al2O3 nanoparticles on histoarchitecture of the freshwater fish Oreochromis mossambicus. Environmental Toxicology and Pharmacology. 2018;59: 74-81.

Boran, H., & Şaffak, S.Transcriptome alterations and genotoxic influences in zebrafish larvae after exposure to dissolved aluminum and aluminum oxide nanoparticles. Toxicology Mechanisms and Methods. 2020;30(7):546-554.

Benavides M, Fernández-Lodeiro J, Coelho P, Lodeiro C, &Diniz M. S. Single and combined effects of aluminum (Al2O3) and zinc (ZnO) oxide nanoparticles in a freshwater fish, Carassius auratus. Environmental science and pollution research, 2016;23(24): 24578-24591.

Temiz Ö, Kargın F. ( Toxicological impacts on antioxidant responses, stress protein, and genotoxicity parameters of aluminum oxide nanoparticles in the liver of Oreochromis niloticus. Biological Trace Element Research, 2022;200(3):1339-1346.

Ali A, Zafar H, Zia M, ulHaq I, Phull AR, Ali, JS, Hussain A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, science and applications. 2016;9: 49.

Kumar M, Gupta G, Muhammed NP, Varghese T, Srivastava PP, Bhushan S, et al. Toxicity ameliorative effect of vitamin E against super-paramagnetic iron oxide nanoparticles on haemato-immunological responses, antioxidant capacity, oxidative stress, and metabolic enzymes activity during exposure and recovery in Labeorohita fingerlings. Aquaculture International. 2022;1-29.

Karthikeyeni S, Siva Vijayakumar T, Vasanth, S, Arul Ganesh MM, Subramanian P. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. J Acad Indus Res. 2013;10: 645-649.

De Lima Faria JM, Guimarães LN, Da Silva, VC, de Oliveira Lima EC, de Sabóia-Morais S. M. T. Recovery trend to co-exposure of iron oxide nanoparticles (γ- Fe2O3) and glyphosate in liver tissue of the fish Poecilia reticulata. Chemosphere. 2021; 282:130993.

Waghmode MS, Gunjal AB, Mulla JA, Patil N. N, Nawani NN. Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation. SN Applied Sciences. 2019;1(4): 1-9.

Carmo TL, Siqueira PR, Azevedo VC, Tavares, D, Pesenti EC, Cestari MM, et al. Overview of the toxic effects of titanium dioxide nanoparticles in blood, liver, muscles, and brain of a Neotropical detritivorous fish. Environmental toxicology. 2019;34(4):457- 468.

Ramsden, C. S., Henry, T. B., & Handy, R. D. Sub-lethal effects of titanium dioxide nanoparticles on the physiology and reproduction of zebrafish. Aquatic Toxicology, 2013; 126: 404-413.

Vidya PV, Chitra KC. Assessment of acute toxicity (LC50-96 h) of aluminium oxide, silicon dioxide and titanium dioxide nanoparticles on the freshwater fish, Oreochromis mossambicus (Peters, 1852). International Journal of Fisheries and Aquatic Studies. 2017;5(1):327-332.

Vignardi CP, Hasue FM, Sartório PV, Cardoso CM, Machado AS, Passos MJ, et al Genotoxicity, potential cytotoxicity and cell uptake of titanium dioxide nanoparticles in the marine fish Trachinotuscarolinus (Linnaeus, 1766). Aquatic Toxicology. 2015;158:218- 229.

Srinivasan M, Venkatesan M, Arumugam V, Natesan G, Saravanan N, Murugesan S. et al Green synthesis and characterization of titanium dioxide nanoparticles (TiO2 NPs) using Sesbania grandiflora and evaluation of toxicity in zebrafish embryos. Process Biochemistry. 2019; 80: 197-202.

Bermejo-Nogales A, Connolly M, Rosenkranz, P, Fernández-Cruz ML, Navas JM. Negligible cytotoxicity induced by different titanium dioxide nanoparticles in fish cell lines. Ecotoxicology and environmental safety, 2017;138: 309-319.