Published: 2022-12-24

DOI: 10.56557/upjoz/2022/v43i243300

Page: 101-109


Department of Zoology, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India.


Department of Zoology, Annamalai University, Annamalainagar-608 002, Tamil Nadu, India.


Department of Zoology and Wildlife Biology, AVC College (Autonomous), Mannampandal, Mayiladuthurai–609305, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


The Croton bonplandianus various leaf extracts were assessed the presence of phytochemical in which predominant numbers occupied by high polarity solvent (methanol extract). ‘+’ denoted as presence of phytochemical group and ‘-’ denoted as absence of phytochemical group. The major phyto-compounds of Dihydro-pseudosolasodine and Methylsulfonic acid, 2,2,2-trichloroethyl ester were identified from C. bonplandianus leaf methanolic extract by using GC-MS analysis. The major phyto-constituents were tested by standard protocol with various concentrations (4-250μg/mL) against 3rd instars larvae of different vector mosquitoes Ae. aegypti and Cx. quinquefasciatus By GC-MS analysis, confirmed the presence of 15 phyto-compounds in which, Dihydro-pseudosolasodine (15.03%) and Methylsulfonic acid, 2,2,2-trichloroethyl ester (17.72%) were noticed as major phyto-constituent. The lethal toxicity (LC50/LC90) of C. bonplandianus leaf methanol extract and Dihydro-pseudosolasodine and Methylsulfonic acid, 2,2,2-trichloroethyl ester tested against 3rd instar larvae of Ae. aegypti and Cx. quinquefasciatus values were 78.48/178.68, 80.33/180.32, 11.46/19.90, 11.72/19.66, 10.66/19.06 and 10.71/19.78 µg/mL, respectively. C. bonplandianus leaf methanol extract and selected phyto-compounds were exposed with juvenile stage of medical vector which found the hyper toxicity at lower concentration. Our results, the C. bonplandianus phyto-pesticides achieved many folds topper toxic effects on medical vectors which provided eco-friendly approaches to environment.

Keywords: Croton bonplandianus, phyto-constituents, GC-MS analysis, blood sucking vector

How to Cite



Download data is not yet available.


WHO. World malaria report. Geneva: World Health Organization; 2015.


Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, et al. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators. Environ Sci Pollut Res Int. 2018;25(11):10272-82.

DOI: 10.1007/s11356-017-8822-y, PMID 28353108.

Esan V, Elanchezhiyan C, Mahboob S, Al-Ghanim KA, Al-Misned F, Ahmed Z, et al. Toxicity of Trewia nudiflora-mediated silver nanoparticles on mosquito larvae and non-target aquatic fauna. Toxin Rev. 2021;41:229-36.

Elumalai K, Krishnappa K, Pandiyan J, Alharbi NS, Kadaikunnan S, Khaled JM, et al. Characterization of secondary metabolites from Lamiaceae plant leaf essential oil: A novel perspective to combat medical and agricultural pests. Physiol Mol Plant Pathol. 2022; 117:101752.

DOI: 10.1016/j.pmpp.2021.101752

Baranitharan M, Alarifi S, Alkahtani S, Ali D, Elumalai K, Pandiyan J, et al. Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: an efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi J Biol Sci. 2020a;28(1):148-56.

DOI: 10.1016/j.sjbs.2020.09.024, PMID 33424291.

Krishnappa K, Baranitharan M, Elumalai K, Pandiyan J. Larvicidal and repellant effects of Jussiaea repens (L.) leaf ethanol extract and its major phyto-constituent against important human vector mosquitoes (Diptera: Culicidae). Environ Sci Pollut Res Int. 2020;27(18):23054-61.

DOI: 10.1007/s11356-020-08917-8, PMID 32329008.

Golding N, Wilson AL, Moyes CL, Cano J, Pigott DM, Velayudhan R, et al. Integrating vector control across diseases. BMC Med. 2015;13:249.

DOI: 10.1186/s12916-015-0491-4, PMID 26423147.

Schaffner F, Mathis A. Dengue and dengue vectors in the WHO European region: Past, present, and scenarios for the future. Lancet Infect Dis. 2014;14(12):1271-80.

DOI: 10.1016/S1473-3099(14)70834-5, PMID 25172160.

Sudeep AB, Shil P. Aedes vittatus (Bigot) mosquito: an emerging threat to public health. J Vector Borne Dis. 2017;54(4):295-300.

DOI: 10.4103/0972-9062.225833, PMID 29460858.

Díez-Fernández A, Martínez-de la Puente J, Gutiérrez-López RS, Soriguer R, Figuerola J. Aedes vittatus in Spain: current distribution, barcoding characterization and potential role as a vector of human diseases. Parasites Vectors. 2018;11(297):1-6.

DOI: 10.1186/s13071-018-2879-4

Xie GL, Ma XR, Liu QY, Meng FX, Li C, Wang J, et al. Genetic structure of Culex tritaeniorhynchus (Diptera: Culicidae) based on COI DNA barcodes. Mitochondrial DNA B Resour. 2021;6(4):1411-5.

DOI: 10.1080/23802359.2021.1911711, PMID 35174283.

Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, et al. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasit Vectors. 2017; 10(1):148.

DOI: 10.1186/s13071-017-2086-8, PMID 28302156.

Lindahl J, Chirico J, Boqvist S, Thu HTV, Magnusson U. Occurrence of Japanese encephalitis virus mosquito vectors in relation to urban pig holdings. Am J Trop Med Hyg. 2012;87(6):1076-82.

DOI: 10.4269/ajtmh.2012.12-0315, PMID 23033401.

Mathivanan T, Govindarajan M, Elumalai K, Krishnappa K, Ananthan A. Mosquito larvicidal and phytochemical properties of Ervatamia coronaria Stapf. (Family: Apocynaceae). J Vector Borne Dis. 2010; 47:178-80.

Krishnappa K, Elumalai K. Mosquitocidal properties of Basella rubra and Cleome viscosaagainst Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci. 2013;17(9):1273-7. PMID 23690200.

Krishnappa K, Elumalai K. Mosquitocidal activity of indigenenous plants of western ghats. Achras sapota linn. (sapotaceae) and Cassia auriculata l. (Fabaceae) against a common malarial vector, [Anopheles stephensi liston (Culicidae: Diptera)]. Coa J. Life. Med. 2014;2:402-10.

Krishnappa K, Elumalai K. Abutilon indicum and Diplocyclos palmatus botanical extracts against ovicidal,pupicidal and repellentactivities of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac J Trop Biomed. 2012;1:1-7.

Krishnappa K, Elumalai K, Dhanasekaran S, Gokulakrishnan J. Larvicidal and phytochemical properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera:Culicidae). J Vector Borne Dis. 2012;49(2):86-90. PMID 22898480.

Raveen R, Ahmed F, Pandeeswari M, Reegan D, Tennyson S, Arivoli S et al. Laboratory evaluation of a few plant extracts for their ovicidal, larvicidal and pupicidal activity against medically important human dengue, chikungunya and Zika virus vector, Aedes aegypti Linnaeus 1762 (Diptera: Culicidae). Int J Mosq Res. 2017;4(4): 17-28.

Rawani A, Ghosh A, Chandra G. Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res. 2010;107(5):1235-40.

DOI: 10.1007/s00436-010-1993-9, PMID 20668877.

Vijayamuthuramalingam UDK, Rajaram R, Kuppusamy KM, Jonnalagadda B, Arokiasamy S. Anti-hyperglycemic and antioxidant potential of Croton bonplandianus. Bail fractions in correlation with polyphenol content. Iran J Basic Med Sci. 2017; 20(12):1390-7.

DOI: 10.22038/IJBMS.2017.9623, PMID 29238476.

Vogel AI. Textbook of practical organic chemistry. London: English Language Book Society and Longman. 1978;1368.

WHO. Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. Geneva: WHO. WHO/CDS/WHOPES/GCDPP. 2005; 1.3.

Abbott WS. A method of computing the effectiveness of an insecticide. Ecol Entomol. 1925;18(2):265-7.

DOI: 10.1093/jee/18.2.265a

Finney DJ. A ststistical treatment of the sigmoid response curve. In: Probit analysis. London: Cambridge University Press. 1971;633.

Elumalai K, Dhanasekaran S, Krishnappa K. Larvicidal activity of Saponin isolated from Gymnema sylvestre R. Br. (Asclepiadaceae) against Japanese Encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Eur Rev Med Pharmacol Sci. 2013;17(10):1404-10. PMID 23740457.

Baranitharan M, Krishnappa K, Elumalai K, Pandiyan J, Gokulakrishnan J, Kovendan K et al. Citrus limetta (Risso) - borne compound as novel mosquitocides: Effectiveness against medical pest and acute toxicity on non-target fauna. S Afr J Bot. 2020b;128:218-24.

DOI: 10.1016/j.sajb.2019.11.014.

Nabikhan A, Kandasamy K, Raj A, Alikunhi NM. Synthesis of antimicrobial silver nanoparticles by callus leaf extracts from saltmarsh plant Sesuvium portulacastrum L. Colloids Surf B Biointerfaces. 2010;79(2):488-93.

DOI: 10.1016/j.colsurfb.2010.05.018, PMID 20627485.

Suresh S, Karthikeyan S, Jayamoorthy K. FTIR and multivariate analysis to study the effect of bulk and nano copper oxide on peanut plant leaves. J Sci Adv Mater Dev. 2016;1:343-50.

Ramanibai R, Velayutham K. Synthesis of silver nanoparticles using 3,5-di- t -butyl-4-hydroxyanisole from Cynodon dactylon against Aedes aegypti and Culex quinquefasciatus. J Asia Pac Entomol. 2016;19(3):603-9.

DOI: 10.1016/j.aspen.2016.06.007

Elumalai K, Mahboob S, Al-Ghanim KA, Al-Misned F, Pandiyan J, Baabu PMK, et al. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J Biol Sci. 2020;27(11):2917-28.

DOI: 10.1016/j.sjbs.2020.08.046, PMID 33100847.

Benelli G. Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asian Pac J Trop Biomed. 2016;6(4):353-4.

DOI: 10.1016/j.apjtb.2015.10.015

Govindarajan M, Benelli G. A facile one-pot synthesis of ecofriendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci. 2017;28(1):15-36.

DOI: 10.1007/s10876-016-1035-6.

Benelli G, Lukehart CM. Special issue: Applications of green synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci. 2017;28(1): 1-2.

DOI: 10.1007/s10876-017-1165-5

Jincai M, Yunusa Adamu U, Isiyaku A, Hua X, Imam TS, Asma’u I, Xiuyi H, Tijjani SI. Evaluation of Pistia stratiotes fractions as effective larvicide against Anopheles mosquitoes. Artif Cells Nanomed Biotechnol. 2019;47(1):945-50.

DOI: 10.1080/21691401.2019.1582538, PMID 30855191.

AlSalhi MS, Elumalai K, Devanesan S, Govindarajan M, Krishnappa K, Maggi F. The aromatic ginger Kaempferia galanga L. (Zingiberaceae) essential oil and its main compounds are effective larvicidal agents against Aedes vittatus and Anopheles maculatus without toxicity on the non-target aquatic fauna. Ind Crops Prod. 2020;158:113012.

DOI: 10.1016/j.indcrop.2020.113012

Zuharah WF, Yousaf A, Ooi KL, Sulaiman SF. Larvicidal activities of family Anacardiaceae on Aedes mosquitoes (Diptera: Culicidae) and identification of phenolic compounds. J King Saud Univ Sci. 2021;33(5):101471.

DOI: 10.1016/j.jksus.2021.101471

Alarcón-Elbal PM, Rodríguez-Sosa MA, Newman BC, Sutton WB. The first record of Aedes vittatus (Diptera: Culicidae) in the Dominican Republic: Public health implications of a potential invasive mosquito species in the Americas. J Med Entomol. 2020;13(6)(6):2016-21.

DOI: 10.1093/jme/tjaa128, PMID 32780102