Published: 2022-12-28

DOI: 10.56557/upjoz/2022/v43i243329

Page: 333-349


Department of Applied Aquaculture and Zoology, Barkatullah Vishwavidyalaya, Bhopal, Madhya Pradesh, India.


Department of Biotechnology, Institute for Excellence in Higher Education, Bhopal, Madhya Pradesh, India.


Department of Zoology, Government Motilal Vigyan Mahavidyalaya, Bhopal, Madhya Pradesh, India.

*Author to whom correspondence should be addressed.


Contamination by heavy metals is a significant concern for the environment owing to their cytotoxicity, endurance, biosorption, as well as biomineralization. Our ecosystem may be contaminated by heavy metals from a multitude of both anthropogenic and natural sources. The major anthropogenic sources of heavy metals are commercial, industrial and agricultural processes; the utilization of fossil fuels and gasoline; waste incinerators; mineral extraction; volcanic eruptions; and the degradation of metal-bearing rocks, the use of chemical inputs in tanneries, textiles, and cut flower industries among many other things. These heavy metals mobility into the water bodies affects the physicochemical properties of the water, endangering aquatic species. When a fish consumes food that has accumulated metals, the gastrointestinal organs, outer skin, and gills are indeed the primary entry points for toxic metals. The most frequent heavy metal pollutants that severely damage fish and have an impact on human health include aluminium, cadmium, chromium, nickel, arsenic, copper, mercury, lead, and zinc. These pollutants were also characterized as systemic toxicants. At modest levels of exposure, each of these heavy metals induces organ dysfunction, and the US Environmental Protection Agency and the International Agency for Research on Cancer have characterized them as oncogenic. The key chemical process underlying metal cytotoxicity is the production of peroxidation. Stress impairs regenerative capacity, damages tissues or organs, lowers the immune response, and results in morphological defects. The abundance of protein content found in fish, along with its high vitamin and fatty acid omega-3 content encourages people to eat fish as a main source of nutrients. As a result, built-up toxic substances in fish muscles are easily transferred to human’s biotransformation, where they have adverse effects that hasten the development of many disorders. As a result, it's indeed vital to explore specific causes of toxic metals as well as associated hazardous impact on fish production in order to implement the laws and legislation pertaining to their conservation in the water habitats, as well as to preserve human existence. The explanations addressed in this research are numerous and varied. For such grounds, this study was produced to enhance our knowledge of heavy metals involvement inside the ecosystem, hazardous mechanisms, including detrimental consequences in fishes.

Keywords: Freshwater fishes, toxic metals, pathological effects, toxic mechanism, bioaccumulation, oxidative damage

How to Cite



Download data is not yet available.


AbadiDrv DS, Nabipour I, Lamani X, Ravanipour M. Comparative investigation of heavy metal, trace and macro element contents in commercially valuable fish species harvested from the Persian Gulf. Environ Sci Pollut Res. 2014;22(9):6670-8.

ABBAS HH, And Ali Fk. Study the effect of hexavalent chromium on some biochemical, cytotoxicological and histopathological aspects of the Oreochromis spp. Fish Pak J Biolsci. 2007; 10:3973-82.

Ha A-L. The influence of calcium and sodium on aluminum toxicity in Nile tilapia (Oreochromis niloticus). Aust J Basic Appl Sci. 2008; 2:747-51.

Ackermann C. A quantitative and qualitative histological assessment of selected organs of Oreochromis mossambicus after acute exposure to cadmium, chromium, and nickel. M. Sc. dissertation. South Africa: University of Johannesburg; 2008.

Ahmed K, AkhanAa HM, Islam M, Hasan A. Toxicity of arsenic (sodium arsenite) to freshwater spotted snakehead Channa punctatus (Bloch) on cellular death and DNA content. Am Eurasian J Agric Environ Sci. 2008; 4:18-22.

Ahmed Mk, Parvin E, Islam Mm, AkterMs K. Al-MamumMh. Chem Ecol, 30. 2014. Lead and cadmium-induced histopathological changes in gill, kidney and liver tissues of freshwater climbing perch Anabas Testudines (Bloch, 1792);2014 .889123:532-40.doi.org. doi: 10.1080/027540.

Anandkumar A, Nagarajan R, Prabakaran K, Rajaram R. Trace metals dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak. East Malays Reg Stu Mar Sci. 2017;16:79-88.doi: 10.1016/j.rsma.2017.08.007.

Azmat H, Javed M, Jabeen G. Acute toxicity of aluminum to the fish (catla catla, Labeo rohita and Cirrhinus mrigala). Pak Vet J. 2012; 32(1):85-7.

AuthmanMmn BE. Kenawyam. Heavy metal concentrations and liver histopathology of Oreochromis niloticus in relation to aquatic pollution. Glob Vet. 2008;2:110-6.

DOI: 10.3923/ijzr.2015.198.206.

Authman Mmn. Life Sci J. 2011. Environmental and experimental studies of aluminium toxicity on the liver of Oreochromis niloticus (Linnaeus, 1758) fish;8(4).

AuthmanMmn Z, Ms, KhallafEa, Abbas H. Use Fish as Bio-indicator of the Effects of Heavy Metals pollution. J Aquac Res Dev. 2015;6(4):1-14.doi:10.4172/2155 9546.1000328.

Bakshi A, Panigrahi AK. A comprehensive review on chromium induced alterations in freshwater fishes. Toxicol Rep. 2018; 5:440-7. doi: 10.1016/j.toxrep.2018.03.007, PMID 29854615.

Bakir F, DamlujiSf A-ZL, Murtadha M, Khalidi A, Al-RawiNy TS, Dahahir Hi C. Tw, smith Jc, Doherty ra. Science. 1973. Methyl mercury poisoning in Iraq; 181:230-241. DOI: 10.1126/science.181.4096. 230.

Barabasz W, Albinska D, Jaskowska M, Lipiec J. Ecotoxicology of aluminium. Pol J Environ Stud, 11(3). 2002; 87442, 0, 2.html:199-203. http://www. Pjoes .com /Ecotoxicology-of-Aluminium.

Garai P, Banerjee P, Mondal P, Saha NC. Effect of heavy metals on fishes: toxicity and bioaccumulation.J.Clin Toxicol.2021; 11(S18)(001).

Zhang C, Qiao Q, Piper JD, Huang B. Assessment of heavy metal pollution from a Fe- smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ Pollut. 2011; 159(10):3057-70.

DOI: 10.1016/j.envpol.2011.04.006, PMID 21561693.

Martin Jr AC, Ramos-Miras Jj, Gill C, Boluda R. Impact of 70 years of urban growth associated with heavy metals pollution. Environ Pollut. 2015; 96:156-63.

Li J, Sun C, Zheng L, Jiang F, Wang S, Zhuang Z et al. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly Islands. Mar Pollut Bull. 2017;122(1-2):464-9.


PMID: 28712770.

Lee CC, Hsu YC, Kao YT, Chen HL. Health risk assessment of the intake of butyltin and phenyltin compounds from fish and seafood in Taiwanese population. Chemosphere. 2016; 164:568-75.

DOI:10.1016/j.chemosphere.2016.08.141, PMID 27632793.

Yi Y, Tang C, Yi T, Yang Z, Zhang S. Health risk assessment of heavy metals in fish and accumulation patterns in the food web in the upper Yangtze River, China. Ecotoxicolsaf. 2017;145:295-302.

DOI:10.1016/j. ecoenv.2017.07.022.

Bashir Fh O, Ms, Mazlanag, Rahimsm S. Heavy Metals Concentration in fishes from the coastal water of Kapar and Mersing, Malaysia. Turk J Fish Aqua Sci. 2013; 13(2):375-82. doi: 10.4194/1303-2712-v13_2_21.

Svobodová Z. Water quality and fish health. Rome: Food and Agriculture Organization, EIFAC technical paper No. 54. p. 67pphttp://www; 1993. Available from: http://fao.org/3/t1623e/t1623e00.html.

EngwaGa FP, NwaloFn U Mn. Mechanism and effects of metals. IntechOpen; 2019. p. 1-24. doi: 10.5772/intechopen.82511.

Nikinmaa M. An introduction to aquatic toxicology. 1st ed. Cambridge, MA: Academic Press, ISBN 978-0-12-411574-3; 2014. 24.

Perugini M, Visciano P, Manera M, Zaccaroni A, Olivieri V, Amorena M. Heavy metals (As, Cd, Hg, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ Monit Assess.2014;186(4):2205-13.doi: 10.1007/s10661-013-3530-7, PMID 24242233.

Sivaperumal P, Sankar TV, Nair V. Heavy metal concentration in fish, shellfish, and fish products from internal markets of India vis-à-vis international standards Food Chem. 2007;102:612-20.doi:10.1016/j. foodchem.2006.05.041.

Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM. Effect of heavy metals on fish larvae deformities: a review. Environ Res. 2015;137:246-55.doi: 10.1016/j.envres.2014.12.014,PMID 25594493.

Salamat N, Movahedinia A, Etemadi-Deylami E, Mohammadi Y. Pike (Esox lucius) Bio-indicator of heavy metal pollution in Anzali Wetland. Water Qual Expo Health. 2015;7(2):251-4. doi: 10.1007/s12403-014-0138-2.

Matos LA, Cunha ACS, Sousa AA, Maranhão JPR, Santos NRS, Gonçalves MMC et al. The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere.2017;185:852-9.doi: 10.1016/j.chemosphere.2017.07.103,PMID 28735238.

Wang S, Shi X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem.2001;222(1-2):3-9.doi: 10.1023/A:1017918013293, PMID 11678608.

Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008;82(8):493-512. doi: 10.1007/s00204-008-0313-y, PMID 18496671.

Jaishankar M, Tseten T, Anbalagan N. Mathe Bb, BeeregowdaKn. Interdiscip Toxicol. 2014. Toxicity, mechanism and health effects of some heavy metals;7(2):60-72. doi: 10.2478/intox-2014-000.

Ali H, Khan E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Environ Chem Lett. Springer ISSN 1610-3653. 2018. doi: 10.1007/s10311-018-0734-7.

Huang J-H. Arsenic trophodynamics along the food chains/webs of different ecosystems: a review. Chem Ecol. 2016;32(9):803-28. doi: 10.1080/02757540.2016.1201079.

Ikemoto T, Tu NP, Okuda N, Iwata A, Omori K, Tanabe S et al. Biomagnification of trace elements in the aquatic food web in the Mekong Delta, South Vietnam using stable carbon and nitrogen isotope analysis. Arch Environ Contam Toxicol. 2008;54(3):504-15. https :. doi: 10.1007/s0024. PMID 18026776.

Le HT, Ngo HTT. Cd, Pb, and Cu in water and sediments and their bioaccumulation in freshwater fish of some lakes in Hanoi,Vietnam. Toxicol Environ Chem. 2013;95(8):1328-37. doi: 10.1080/02772248.2013.877462.

Hussain M, Muhammad S, Malik RN, Khan MU, Farooq U. Status of heavy metal residues in fish species of Pakistan. In: Whitacre DM, editor. Reviews of environmental contamination andtoxicology. Vol. 230. Berlin: Springer; 2014. p. 111-32. https :. doi: 10.1007/978-3-319-04411. PMID 24609520.

Javed M, Usmani N. Assessment of heavy metal (Cu, Ni, Fe Co, Mn, Cr, Zn) pollution in effluent dominated rivulet water and their effect on glycogen metabolism and histology of Mastacembelus armatus. SpringerPlus. 2013; 2:390. https:. doi: 10.1186/2193-1801-2-390, PMID 24133639.

Islam GMR, Habib MR, Waid JL, Rahman MS, Kabir J, Akter S et al. Heavy metal contamination of freshwater prawn (Macrobrachium rosenbergii) and prawn feed in Bangladesh: a market-based study to highlight probable health risks. Chemosphere. 2017; 170:282-9. https: doi: 10.1016/j.chemo, PMID 28011306 sphere.2016.11.163.

Tabinda AB, Hussain M, Ahmed I, Yasar A. Accumulation of toxic and essential trace metals in fish and prawns from Keti Bunder Thatta District, Sindh. Pak J Zool. 2010; 42:631-8.

Mortuza MG, Al-Misned FA. Heavy metal concentration in two freshwater fishes from Wadi Hanifah (Riyadh, Saudi Arabia) and evaluation of possible health hazard to consumers. Pak J Zool. 2015; 47:839-84.

DeForest DK, Brix KV, Adams WJ. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aqua Toxicol.2007;84(2):236-46.doi: 10.1016/j.aquat,PMID17673306 ox.2007.02.022.

Olaniran AO, Balgobind A, Pillay B. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies. Int J Mol Sci. 2013;14(5):10197-228. doi: 10.3390/ijms140510197, PMID 23676353.

AL-Taee SK, Karam H, Ismail HKh. Review on Some Heavy metals toxicity on freshwater fishes. J Appl Vet Sci. 2020;5(3):78-86.

Barcarolli IF, Martinez CB. Effects of aluminum in acidic water on hematological and physiological parameters of the neotropical fish Leporinus macrocephalus (Anostomidae). Bull Environ Contam Toxicol. 2004; 72(3):639-46. doi: 10.1007/s00128-004-0291-6, PMID 15114467.

CorreiaTg NA, Bianchini A. Moreira Rg. Comp Biochem Physiol C. 2010. Aluminum as an endocrine disruptor in female Nile Tilapia (Oreochromis niloticus). 02 002; 151:461-6. doi: 10.1016/j. cbpc.

Yancheva V, Velcheva I, Stoyanova S, Georgieva E. Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: a review. Appl Ecol EnvironRes.2016;14(1):47-75.doi: 10.15666/aeer/1401_047075.

Gernhöfer M, Pawert M, Schramm M, Müller E, Triebskorn R. Ultra structural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst Stress Recov.2001;8(3/4):241-60.doi: 10.1023/A:1012958804442.

Paris-Palacios S, Biagianti-Risbourg S, Vernet G. Biochemical and ultrastructural hepatic perturbation of Brachydanio rerio (Teleostei, Cyprinidae) exposed two sublethal concentrations of copper sulphate. Aquat Toxicol. 2000; 50:109124. 40. doi: 10.1016/s0166-445x (99) 0 0090-9.

HadiAa, Alwan Sf. Histopathological changes in gills, liver and kidney of freshwater fish, Tilapia zillii, exposed to aluminium [research article]. Vol. 3(11); 2012. p. 2071-81.

Suhendrayatna OhkiA, Nakajima T, Maeda S, Maeda S. Studies on the accumulation and transformation of arsenic in freshwater organisms II. Accumulation and transformation of arsenic compounds by Tilapia mossambica. Chemosphere. 2002a; 46(2):325-31. 88 https:. doi: 10.1016/s0045-6535(01)00085-6, PMID 11827292.

Suhendrayatna, Ohki A, Nakajima T, Maeda S. Studies on the accumulation and transformation of arsenic in freshwater organisms I. Accumulation, transformation and toxicity of arsenic compounds on the Japanese Medaka, Oryzias latipes.Chemosphere.2002b; 46(2):319-24.doi:10.1016/S0045-6535(01)00084-4.

Hughes MF. Arsenic toxicity and potential mechanisms of action. Toxicol Lett. 2002; 133(1):1-16. doi: 10.1016/s0378-4274(02)00084-x, PMID 12076506.

Emb S.1991. Metal poisoning in fish. Environmental and life sciences associates. Boca Raton: CRC Press, Inc.

Hossain M. Effect of arsenic (NaAsO2) on the histological change of snakehead fish,Channa punctatus. J Life Earth Sci. 2012;7:67-70 https:// banglajol.info.index.php/JLES.

Liao CM, Tsai JW, Ling MP, Liang HM, Chou YH, Yang PT. Organ-specific toxicokinetics and dose-response of arsenic in tilapia Oreochromis mossambicus. Arch Environ Contam Toxicol. 2004; 47(4):502-10. doi: 10.1007/s00244-004-3105-2, PMID 15499501.

Puntoriero ML, Fernández Cirelli A, Volpedo AV. Histopathological Changes in Liver and Gills of Odontesthes bonariens is inhabiting a Lake with High Concentrations of arsenic and fluoride (Chasicó lake, Buenos Aires Province). Rev Int Contam Ambie. 2018; 34(1):69-77.doi: 10.20937/RICA.2018.34.01.06.

Gornati R, Monetti C, Vigetti D, Bosisio S, Fortaner S, Sabbioni E et al. Arsenic toxicity and Hsp70 expression in Xenopus laevis embryos. Altern Lab Anim. 2002;30(6):597-603. doi: 10.1177/026119290203000606. PMID 12513685.

Devlin EW. Acute toxicity, uptake and histopathology of aqueous methyl mercury to fathead minnow embryos. Ecotoxicology. 2006;15(1):97-110. doi: 10.1007/s10646-005-0051-3, PMID 16400529.

Pack EC, Lee SH, Kim CH, Lim CH, Sung DG, Kim MH et al. Effects of environmental temperature change on mercury absorption in aquatic organisms with respect to climate warming. J Toxicol Environ Health A. 2014; 77(22-24):1477-90.doi: 10.1080/15287394.2014.955892,PMID 25343296.

TsubakiTk, Irukayama K. Minamata disease: methyl mercury poisoning in Minamata and Niigata, Japan. New York: Elsevier Scientific Public, Co; 1977. p. 8-34.

Selvanathan J, Vincent S, Nirmala A. Histopathology changes in freshwater fish. Clarias batrachus (Linn.) exposed to mercury and cadmium [research article]. Vol. 3(2); 2013. p. 11.

Wester PW, Canton HH. Histopathological effects in Poecilia reticulata (guppy) exposed to methyl mercury chloride. Toxicol Pathol. 1992; 20(1):81-92.

DOI: 10.1177/019262339202000110, PMID 1411135

Gochfeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ.Saf.2003;56(1):174-9.DOI: 10.1016/s0147-6513(03)00060-5,PMID 12915150

Oliveira Ribeiro CA, Filipak Neto F, Mela M, Silva PH, Randi MA, Rabitto IS et al. Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methyl mercury, inorganic lead, and tributyltin chloride. Environ Res. 2006;101(1):74-80. DOI: 10.1016/j.envres.2005.11.005,PMID 16388797

Raihan SM, Moniruzzaman M, Park Y, Lee S, Bai SC. Evaluation of dietary organic and inorganic mercury threshold levels on induced mercury toxicity in a marine fish model. Animals (Basel). 2020; 10(3):405.

DOI: 10.3390/ani10030405, PMID 32121390

Raldúa D, Diez S, BayonaJm BD. Mercury levels and liver pathology in feral fish living in the vicinity of mercury cell chlor-alkali factory.Chemosphere.2006.07.053. 2007;66:1217-25. doi: 10.1016/j.

Zhang QF, Li YW, Liu ZH, Chen QL. Reproductive toxicity of inorganic mercury exposure in adult zebra fish: histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat Toxicol.2016;177:417-24.DOI: 10.1016/j.aquatox.2016.06.018.PMID 27391360

Monteiro V, CavalcanteDgsm VM, Sofia Sh. Martinez Cbr. Aquat Toxicol. 2011. In vivo and in vitro exposures for the evaluation of the genotoxic effects of lead on the Neotropical freshwater fish Prochilodus lineatus; 104:291-8. doi: 10.1016/j. aquatox.201 1.05.002.

Sepe A, Ciaralli L, Ciprotti M, Giordano R, Funari E, Costantini S. Determination of cadmium, chromium, lead and vanadium in six fish species from the Adriatic Sea. Food Addit Contam.2003;20(6):543-52.DOI: 10.1080/0265203031000069797,PMID 12881127.

OlojoEaa O. Kb, Mbaka G, OluwemimoAd. Afr J Biotechnol. 2005. Histopathology of the gill and liver tissues of the African cat fish, Clarias gariepinus exposed to lead; 4:117.

Choudhary L, Vyas T, ChauhanNrs MB, YadavGk BS. Histopathological changes due to lead toxicity in gills of P. ticto (hem). Int Res J Sci Eng. 2019; 7(4):92-5.

Castro-González MI, Méndez-Armenta M. Heavy metals: implications associated to fish consumption. Environ Toxicol Pharmacol. 2008;26(3):263-71.DOI: 10.1016/j.etap.2008.06.001, PMID 21791373

Ghosh D, Bhattacharya S, Mazumder S. Perturbations in the catfish immune responses by arsenic: organ and cell-specific effects. Comp Biochem Physiol C Toxicol Pharmacol. 2006;143(4):455-63.DOI: 10.1016/j.cbpc.2006.04.010, PMID 16765097

HouJl ZP. Zhang lz, Feng L. Zhang T, Liu Jy, FengGp. 2011. Morphological deformities and recovery, accumulation and elimination of lead in body tissues of Chinese sturgeon, Acipenser sinensis, and early life stages: a laboratory study. ApplIchthyol J. 514-519


Shah Sl, Altindağ A. Alterations in the immunological parameters of Tench. Turk J Vet Anim Sci. 2005; 29:1163-8 (Tincatinca L1758) after acute and chronic exposure to lethal and sub lethal treatment with mercury, cadmium and lead.

Biswas S, GhoshAa. Lead-induced histological alterations in ovarian tissue of freshwater teleost Mastacembelus spancalus (Hamilton). Int J Adv Sci Res. 2016; 2(01):045-51. doi: 10.7439/ijasr.

La LlaveLeón O, Salas Pacheco JM. Effects of lead on reproductive health; 2020.

Heidari S, Mostafaei S, Razazian N, Rajati M, Saeedi A, Rajati F. The effect of lead exposure on IQ test scores in children under 12 years: a systematic review and meta-analysis of case-control studies. Syst Rev. 2022; 11(1):106. doi: 10.1186/s13643-022-01963-y,PMID 35637522.

FaragAm MT, Marty Gd, Easton M, Harper Dd, Little Ee CL. The effect of chronic chromium exposure on the health of chinook salmon (Oncorhynchus tshawytscha). Aquat Toxicol.2006;l(76):246-57.DOI: 10.1016/j.aquatox.2005.09.011

Rashed MN. Monitoring of environmental heavy metals in fish from Nasser Lake. Environ Int. 2001; 27(1):27-33.

DOI: 10.1016/s0160-4120(01)00050-2. PMID 11488387

Has-Schön E, Bogut I, Strelec I. Heavy metal profile in five fish species included in the human diet, domiciled in the end flow of River Neretva. Arch Environ Contam Toxicol. 2006; 50(4):545-51. https://www. ncbi. doi: 10.1007/s00244-005-0047-2, PMID 16453065.

Eisler R. Handbook of chemical risk assessment: health hazards to humans, plants, and animals. Boca Raton: CRC Press, Lewis’s publishers, ISBN 9781566705066; 2000:4141.

LushchakOv KO, LozinskyOv SJm, StoreyKb, LushchakVi. Chromium (III) induces oxidative stress in goldfish liver and kidney. Aquat Toxicol. 2009; 93:45-52.

DOI: 10.1016/j. aquatox .2009.03. 007

Roberts AP, Oris JT. Multiple biomarker responses in rainbow trout during exposure to hexavalent chromium. Comp Biochem Physiol C Toxicol Pharmacol. 2004; 138(2):221-8.

DOI:10.1016/j.cca.2004.08.006,PMID 15450870

Muthukumaravel K, Rajaraman P. A Study on the toxicity of chromium on the histology of gill and liver of freshwater fish Labeo rohita. Int J Pure Appl Zool. 2013; 122-126 ISSN Print/Online: 2320-9577/2320-9585.

Mishra AK, Mohanty B. Histopathological effects of hexavalent chromium in the ovary of a fresh water fish, Channa punctatus (Bloch). Bull Environ Contam Toxicol.2008; 80(6):507-11.

DOI:10.1007/s00128-008-9406-9,PMID 18392725

Mishra AK, Mohanty B. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch). Sci Total Environ.2009;407(18):5031-8.DOI: 10.1016/j.scitotenv.2009.05.042,PMID 19555994

Begum G, VenkateswaraRj SK, Srikanth K. Oxidative stress and changes in locomotor behavior and gill morphology of Gambusia affinis exposed to chromium. Toxicol Environ Chem. 2006;88(2):355-65.org. doi: 10.1080/02772240600635985.

Vergilio Cs, Moreira Rv, CarvalhoCe, MeloEjt. Histopathological effects of mercury on male gonad and sperm of tropical fish Gymnotus carapo invitro. E3S Web of Conferences. 2013; 12004:3-6.DOI: 10.1111/jfd.12148

Domingo JlBocio A, Falcó G. Llobet Jm. Toxicologist. Benefits and risks of fish consumption part 1. A quantitative analysis of the intake of omega -3 fatty acids and chemical Contaminants. 2007; 230(2-3):219-26.

Lin Q, Huang Hh, Wang L, NingJj D Fy. GuYg. 2017. Heavy metals in fish tissue stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea Mar Pollut Bull;114(2):1125-9.DOI: 10.1016/j. marpolbul .2016 .10.040

Hajeb P, Jinap S, Ismail A, Fatimah AB, Jamilah B, Abdul Rahim M. Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Control.2009; 20(1):79-84.DOI: 10.1016/j.foodcont.2008.02.012

Ӧzden Ӧ, Erkan N, Kalpan M. T Kara kulaks.Toxic Metals and Omega3 Fatty Acids of Blue fin Tuna from Aquaculture: Health Risk and Benefits. Expo Health. 2018;1-10. DOI: 10.1007/s12403-018-0279-9.