ASCERTAINING THE ANTIOXIDANT PROPERTIES OF QUERCETIN AGAINST OXIDATIVE STRESS IN COMBATING ALZHEIMER’S DISEASE: A REVIEW

PDF

Published: 2022-12-31

DOI: 10.56557/upjoz/2022/v43i243385

Page: 680-694


SATABDI SAIKIA *

Department of Zoology, Sibsagar College, Joysagar, Sivasagar, Assam-785665, India.

*Author to whom correspondence should be addressed.


Abstract

Quercetin is a flavonoid compound mostly found in plants including fruits, vegetables, green tea, red wine etc. Apart from having many health effects, quercetin possesses antioxidant capacities. It can scavenge hydroxyl radical (OH-), hydrogen peroxide (H2O2), nitric oxide (NO) and other free radicals. The reactive oxygen species have high potential to interrupt the functions of lipids, proteins, DNA and RNA which can lead to various epigenetic changes. These components in the neurons are more vulnerable to oxidative stress. Mitochondrial dysfunctions, amyloidopathy, taopathy, metal accumulation, synaptic dysfunctions, genetic and neuro- inflammation can cause oxidative stress in a cell, which is responsible for development of Alzheimer’s disease (AD). The relationship between oxidative stress and AD suggests that oxidative stress is an important contributor of the pathological process for AD and antioxidants may be useful for the treatment. It is proposed that quercetin would be the best choice to act against oxidative stress and hence to AD as it has antioxidant properties as well can inhibit the crowding of macromolecules such as Aβ, Tau protein etc. The neuroprotective effects of quercetin are regulated through nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Paraoxonase-2, c-Jun- N-terminal kinase (JNK), Protein kinase C, Mitogen-activated protein kinase (MAPK) and PI3K/AKt pathways. Therefore the aim of this review is to study the antioxidant effects of quercetin against oxidative stress and hence to prevent the pathogenesis of AD.

Keywords: Oxidative stress, alzheimer’s disease, mitochondrial dysfunction, aβ plaque, tau hyperphosphorylation, antioxidant, quercetin


How to Cite

SAIKIA, S. (2022). ASCERTAINING THE ANTIOXIDANT PROPERTIES OF QUERCETIN AGAINST OXIDATIVE STRESS IN COMBATING ALZHEIMER’S DISEASE: A REVIEW. UTTAR PRADESH JOURNAL OF ZOOLOGY, 43(24), 680–694. https://doi.org/10.56557/upjoz/2022/v43i243385

Downloads

Download data is not yet available.

References

Wang L, Cheng X, Li H, Qiu F, Yang N, Wang B et al. Quercetin reduces oxidative stress and inhibits activation of c-Jun N-terminal kinase/activator protein 1 signaling in an experimental mouse model of abdominal aortic aneurysm. Mol Med Rep. 2014;9(2):435-42. DOI: 10.3892/mmr.2013.1846

Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 2015;93:134-45. DOI: 10.1016/j.neuropharm.2015.01.027

Butterfield DA, Boyd-Kimball D. Oxidative stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. J Alzheimers Dis. 2018;62(3):1345-67. DOI: 10.3233/JAD-170543

Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet. 2012;46:265-87. DOI: 10.1146/annurev-genet-110410-132529

Tönnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105-21. DOI: 10.3233/JAD-161088

Chen X, Drew J, Berney W, Lei W. Neuroprotective natural products for Alzheimer’s disease. Cells. 2021;10(6):1309. DOI: 10.3390/cells10061309

Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA et al. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol. 2020;67(2):190- 5.

Castellani R, Hirai K, Aliev G, Drew KL, Nunomura A, Takeda A et al. Role of mitochondrial dysfunction in Alzheimer’s disease. J Neurosci Res. 2002;70(3):357-60. DOI: 10.1002/jnr.10389

Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014;1842(8):1240-7. DOI: 10.1016/j.bbadis.2013.10.015

Cioffi F, Adam RHI, Broersen K. Molecular mechanisms and genetics of oxidative stress in Alzheimer’s disease. J Alzheimers Dis. 2019;72(4):981-1017. DOI: 10.3233/JAD-190863

Zhao Y, Zhao B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:Article ID 316523, 10 pages,. https:. DOI: 10.1155/2013/316523

Chen Z, Zhong C. Oxidative stress in Alzheimer’s disease. Neurosci Bull. 2014;30(2):271-81. DOI: 10.1007/s12264-013-1423-y

Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780-91. DOI: 10.1038/nrn2734

Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C et al. Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol. 2016;53(1):648-61. DOI: 10.1007/s12035-014-9053-6

Foster EM, Dangla-Valls A, Lovestone S, Ribe EM, Buckley NJ. Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front Neurosci. 2019;13:164. DOI: 10.3389/fnins.2019.00164

Wang C, Zeng Z, Liu Q, Zhang R, Ni J. Se-methylselenocysteine inhibits apoptosis induced by clusterin knockdown in neuroblastoma N2a and SH-SY5Y cell lines. Int J Mol Sci. 2014;15(11):21331-47. DOI: 10.3390/ijms151121331

Chen S, Jiang H, Wu X, Fang J. Therapeutic effects of quercetin on inflammation, obesity, and Type 2 diabetes. Mediators Inflamm. 2016;2016:9340637. DOI: 10.1155/2016/9340637

Gella A, Durany N. Oxidative stress in Alzheimer disease. Cell Adh Migr. 2009;3(1):88-93. DOI: 10.4161/cam.3.1.7402

Batiha GE, Beshbishy AM, Ikram M, Mulla ZS, El-Hack MEA, Taha AE et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020;9(3):374. DOI: 10.3390/foods9030374

Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in Alzheimer’s disease. Biomolecules. 2019; 10(1):59. DOI: 10.3390/biom10010059

Boots AW, Drent M, de Boer VC, Bast A, Haenen GR. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin Nutr. 2011;30(4):506-12. DOI: 10.1016/j.clnu.2011.01.010

Wang W, Sun C, Mao L, Ma P, Liu F, Yang J et al. The biological activities, chemical stability, metabolism and delivery systems of quercetin: a review. Trends Food Sci Technol. 2016;56:21-38. DOI: 10.1016/j.tifs.2016.07.004.

Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxid Med Cell Longev. 2016;2016:2986796. DOI: 10.1155/2016/2986796

Chen X, Yin OQ, Zuo Z, Chow MS. Pharmacokinetics and modeling of quercetin and metabolites. Pharm Res. 2005;22(6):892-901. DOI: 10.1007/s11095-005-4584-1

de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S, Alink GM et al. Tissue distribution of quercetin in rats and pigs. J Nutr. 2005;135(7):1718-25. DOI: 10.1093/jn/135.7.1718

Khan A, Ali T, Rehman SU, Khan MS, Alam SI, Ikram M et al. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. Front Pharmacol. 2018;9:1383. DOI: 10.3389/fphar.2018.01383

Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6): 1123. DOI: 10.3390/molecules24061123

Ademosun AO, Oboh G, Bello F, Ayeni PO. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J Evid Based Complementary Altern Med. 2016;21(4):NP11-7. DOI: 10.1177/2156587215610032

Braun KF, Ehnert S, Freude T, Egaña JT, Schenck TL, Buchholz A et al. Quercetin protects primary human osteoblasts exposed to cigarette smoke through activation of the antioxidative enzymes HO-1 and SOD-1. TheScientificWorldJOURNAL. 2011;11:2348-57. DOI: 10.1100/2011/471426

Kim CS, Kwon Y, Choe SY, Hong SM, Yoo H, Goto T et al. Quercetin reduces obesity-induced hepatosteatosis by enhancing mitochondrial oxidative metabolism via heme oxygenase-1. Nutr Metab (Lond). 2015;12(1):33. DOI: 10.1186/s12986-015-0030-5

Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci. 2019;224:109-19. DOI: 10.1016/j.lfs.2019.03.055

Sun L, Xu G, Dong Y, Li M, Yang L, Lu W. Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway. Molecules. 2020;25(5):1053. DOI: 10.3390/molecules25051053

Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R et al. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm Sin B. 2015;5(1):47-54. DOI: 10.1016/j.apsb.2014.12.003

Ramyaa P, Krishnaswamy R, Padma VV. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-κB and COX-2. Biochim Biophys Acta. 2014;1840(1):681-92. DOI: 10.1016/j.bbagen.2013.10.024

Weng CJ, Chen MJ, Yeh CT, Yen GC. Hepatoprotection of quercetin against oxidative stress by induction of metallothionein expression through activatingMAPK and PI3K pathways and enhancing Nrf2 DNA-binding activity. New Biotechnol. 2011;28(6):767-77. DOI: 10.1016/j.nbt.2011.05.003

Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A et al. Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol. 2007; 47(2):253-61. DOI: 10.1016/j.jhep.2007.02.008

Xia SF, Xie ZX, Qiao Y, Li LR, Cheng XR, Tang X et al. Differential effects of quercetin on hippocampus-dependent learning and memory in mice fed with different diets related with oxidative stress. Physiol Behav. 2015; 138:325-31. DOI: 10.1016/j.physbeh.2014.09.008

Chang HC, Yang YR, Wang PS, Wang RY. Quercetin enhances exercise-mediated neuroprotective effects in brain ischemic rats. Med Sci Sports Exerc. 2014;46(10):1908-16. DOI: 10.1249/MSS.0000000000000310

Jiang W, Luo T, Li S, Zhou Y, Shen XY, He F et al. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. Plos One. 2016; 11(4):e0152371. DOI: 10.1371/journal.pone.0152371

Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011;89(25-26):939-45. DOI: 10.1016/j.lfs.2011.09.023

Michel PP, Hirsch EC, Hunot S. Understanding dopaminergic cell death pathways in Parkinson disease. Neuron. 2016;90(4):675- 91. DOI: 10.1016/j.neuron.2016.03.038

Islam MR, Zaman A, Jahan I, Chakravorty R, Chakraborty S. In silico QSAR analysis of quercetin reveals its potential as therapeutic drug for Alzheimer’s disease. J Young Pharm JYP. 2013;5(4):173-9. DOI: 10.1016/j.jyp.2013.11.005