An Overview of Recent Developmental Studies in Zooplanktons


Published: 2023-03-18

DOI: 10.56557/upjoz/2023/v44i33419

Page: 38-46

Namita Goyat

Department of Zoology, Baba Mastnath University, Haryana, India.

Anil Kumar *

Department of Zoology, Baba Mastnath University, Haryana, India.

. Seema

Department of Zoology, Baba Mastnath University, Haryana, India.

. Arvind

Department of Zoology, Chaudhary Devi Lal University, Haryana, India.

Sukhmeet Singh

Department of Zoology, Chaudhary Devi Lal University, Haryana, India.

Muskan Kamboj

Department of Zoology, Chaudhary Devi Lal University, Haryana, India.

*Author to whom correspondence should be addressed.


In both saltwater and freshwater environments, zooplankton can be found floating in the sunlit zone, where food sources are plentiful. They are crucial to the functioning of the food web because they mediate between primary producers and higher trophic levels. Current methods and equipment for studying and characterizing zooplankton are discussed. Similarly, zooplankton are highly attuned to their surroundings and exhibit measurable responses to shifts in water chemistry, temperatures, and other hydrographic factors. Though zooplankton have been shown to be useful as bio-indicators of eutrophication and water quality status, widespread application and development of such indicators are still relatively new and face several challenges. In this review article traditional and modern approaches used for zooplankton analysis are well discussed and the major focus area is the characterization of zooplankton sampling. In order to cover all bases in zooplanktonic studies, a holistic approach is used.

Keywords: Zooplankton, environment, ecosystem, aquatic, biomonitoring

How to Cite

Goyat, N., Kumar, A., Seema, ., Arvind, ., Singh, S., & Kamboj, M. (2023). An Overview of Recent Developmental Studies in Zooplanktons. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(3), 38–46.


Download data is not yet available.


Alprol AE, Heneash AMM, Soliman AM, Ashour M, Alsanie WF, Gaber A et al. Assessment of water quality, eutrophication, and zooplankton community in lake Burullus, Egypt. Diversity. 2021;13(6):268.


Singh S, Sharma RC. Zooplankton diversity and potential indicator species for assessment water quality of high altitude wetland. India: Dodi Tal of Garhwal Himalaya. Academia Arena. 2020;12(5): 1-6.


Muñoz-Colmenares ME, Soria JM, Vicente E. Can zooplankton species be used as indicators of trophic status and ecological potential of reservoirs? Aquat Ecol. 2021;55(4):1143-56.


Xiong W, Ni P, Chen Y, Gao Y, Li S, Zhan A. Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton. Environ Pollut. 2019;252(B):1483-90.


Lomartire S, Marques JC, Gonçalves AMM. The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment. Ecol Indic. 2021;129:107867.


Chattopadhyay D, Panda S. Establishment of Significant Correlation between Seasonal Physicochemical parameters and Zooplankton Diversity in Saheb Bandh, at Purulia, West Bengal. International Journal of Scientific Research in Research Paper. J Biol Sci. 2022; 9(2):17-23. Available:

Manickam N, Bhavan PS, Santhanam P, Bhuvaneswari R, Muralisankar T, Srinivasan V et al. Impact of seasonal changes in zooplankton biodiversity in Ukkadam Lake, Coimbatore, Tamil Nadu, India, and potential future implications of climate change. J Basic Appl Zool. 2018;79(1):15. Available:

Prasannatha A, Neeraja DB, Kamraju M. Quantitative analysis of zooplanktons of fresh water ecosystem in dindi reservoir, Telangana, India. Int J Res Anal Rev. 2019;6(2):4621-61.

Telesh IV. Plankton of the Baltic estuarine ecosystems with emphasis on Neva Estuary: a review of present knowledge and research perspectives. Mar Pollut Bull. 2004;49(3):206-19.


Gomes LF, Pereira HR, Gomes ACAM, Vieira MC, Martins PR, Roitman I et al. Zooplankton functional-approach studies in continental aquatic environments: a systematic review. Aquat Ecol. 2019;53(2): 191-203.


Rissik D. Plankton Suthers IM, editor. CSIRO Publishing; 2009.


Harris RP, Wiebe J, Lenz HRS, MHM. ICES zooplankton methodology manual. Elsevier; 2000.


Pitois SG, Bouch P, Creach V, van der Kooij J. Comparison of zooplankton data collected by a continuous semi-automatic sampler (CALPS) and a traditional vertical ring net. J Plankton Res. 2016;38(4):931-43.


Sono S, Moloney CL, van der Lingen CD. Assessing the utility of a continuous, underway fish egg sampler (CUFES) for sampling zooplankton. Afr J Mar Sci. 2009;31(2):181-9. Available:

Steedman HF. Zooplankton fixation and preservation. Monographs on Oceanographic Methodology, UNESCO Press. 1976;4:182-3.

Reiss RA, Schwert DP, Ashworth AC. Field preservation of Coleoptera for molecular genetic analyses. Environ Entomol. 1995; 24(3):716-9. Available:

Jungbluth MJ, Goetze E, Lenz PH. Measuring copepod naupliar abundance in a subtropical bay using quantitative PCR. Mar Biol. 2013;160(12): 3125-41. Available:

Bucklin A, Allen LD. MtDNA sequencing from zooplankton after long-term preservation in buffered formalin. Mol Phylogenet Evol. 2004;30(3):879-82. Available:

Ripley SJ, Baker AC, Miller PI, Walne AW, Schroeder DC. Development and validation of a molecular technique for the analysis of archived formalin-preserved phytoplankton samples permits retrospective assessment of Emiliania huxleyi communities. J Microbiol Methods. 2008;73(2):118-24. Available:

Ruane S, Austin CC. Phylogenomics using formalin‐fixed and 100+ year‐old intractable natural history specimens. Mol Ecol Resour. 2017;17(5):1003-8. Available:

Reid PC, Colebrook JM, Matthews JBL, Aiken J. The Continuous Plankton Recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog Oceanogr. 2003;58(2-4):117-73.


Sano M, Makabe R, Kurosawa N, Moteki M, Odate T. Effects of Lugol’s iodine on long‐term preservation of marine plankton samples for molecular and stable carbon and nitrogen isotope analyses. Limnol Oceanogr Methods. 2020;18(11): 635-43. Available:

Álvarez E, López-Urrutia Á, Nogueira E, Fraga S. How to effectively sample the plankton size spectrum? A case study using FlowCAM. J Plankton Res. 2011;33(7):1119-33. Available:

Andújar C, Arribas P, Yu DW, Vogler AP, Emerson BC. Why the COI barcode should be the community DNA metabarcode for the metazoa. Mol Ecol. 2018;27(20):3968-75. Available:

Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan J-B et al. Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res. 2010;32(3):285-303. Available:

Segers HH. A reappraisal of the Scaridiidae (Rotifera, Monogononta). Zool Scripta. 1995;24(2):91-100. Available:

Donne Papa RS, Tordesillas DT, Mamaril AC, Taal L. An updated taxonomic account of limnetic crustacean zooplankton in. Philipp J Sci. 2012;141(2).

Hines H. The biogeography, phylogeny, and dispersal of freshwater and terrestrial free-living ciliates in Florida, USA. Bournemouth University; 2019.

Schultes S, Lopes RM. Laser Optical Plankton Counter and Zooscan intercomparison in tropical and subtropical marine ecosystems. Limnol Oceanogr Methods. 2009;7(11):771-84. Available:

Álvarez E, Moyano M, López-Urrutia Á, Nogueira E, Scharek R. Routine determination of plankton community composition and size structure: a comparison between FlowCAM and light microscopy. J Plankton Res. 2014;36(1):170-84. Available:

Buskey EJ, Hyatt CJ. Use of the Flow CAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae. 2006;5(6):685-92. Available:

Poulton NJ. FlowCam: quantification and classification of phytoplankton by imaging flow cytometry; 2016. p. 237-47. Available:

Le Bourg B, Cornet-Barthaux V, Pagano M, Blanchot J. FlowCAM as a tool for studying small (80-1000 µm) metazooplankton communities. J Plankton Res. 2015;37(4):666-70. Available:

Radulovici AE, Archambault P, Dufresne F. DNA barcodes for marine biodiversity: moving fast forward? Diversity. 2010;2(4):450-72. Available:

Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proc Biol Sci. 2003;270(1512):313-21. Available:

Bucklin A, Hopcroft RR, Kosobokova KN, Nigro LM, Ortman BD, Jennings RM et al. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep Sea Res II. 2010a;57(1-2):40-8.


Bucklin A, Ortman BD, Jennings RM, Nigro LM, Sweetman CJ, Copley NJ et al. A Rosetta Stone for metazoan zooplankton: DNA barcode analysis of species diversity of the Sargasso Sea (northwest Atlantic Ocean). Deep Sea Res II. 2010b;57(24-26):2234-47. Available:

Chen G, Hare MP. Cryptic diversity and comparative phylogeography of the estuarine copepod Acartia tonsa on the US Atlantic coast. Mol Ecol. 2011;20(11): 2425-41. Available:

Hill R, Allen L, Bucklin A. Multiplexed species-specific PCR protocol to discriminate four N. Atlantic Calanus species, with an mtCOI gene tree for ten Calanus species. Mar Biol. 2001;139(2):279-87. Available:

Feltens R, Görner R, Kalkhof S, Gröger-Arndt H, von Bergen M. Discrimination of different species from the genus Drosophila by intact protein profiling using matrix-assisted laser desorption ionization mass spectrometry. BMC Evol Biol. 2010;10(1):95. Available:

Kaufmann C, Ziegler D, Schaffner F, Carpenter S, Pflüger V, Mathis A. Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for characterization of Culicoides nubeculosus biting midges. Med Vet Entomol. 2011;25(1):32-8. Available:

Mazzeo MF, de Giulio BD, Guerriero G, Ciarcia G, Malorni A, Russo GL et al. Fish authentication by MALDI-TOF mass spectrometry. J Agric Food Chem. 2008;56(23):11071-6. Available:

Volta P, Riccardi N, Lauceri R, Tonolla M. Discrimination of freshwater fish species by Matrix- Assisted Laser Desorption/ ionization- time of flight mass spectrometry (MALDI-TOF MS): a pilot study. J Limnol. 2012;71(1):17.


Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ. Comparison of molecular species identification for North S ea calanoid copepods (C rustacea) using proteome fingerprints and DNA sequences. Mol Ecol Resour. 2013;13(5): 862-76. Available:

Riccardi N, Lucini L, Benagli C, Welker M, Wicht B, Tonolla M. Potential of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification of freshwater zooplankton: a pilot study with three Eudiaptomus (Copepoda: Diaptomidae) species. J Plankton Res. 2012;34(6):484-92. Available:

Hynek R, Kuckova S, Cejnar P, Junková P, Přikryl I, Říhová Ambrožová J. Identification of freshwater zooplankton species using protein profiling and principal component analysis. Limnol Oceanogr Methods. 2018;16(3): 199-204. Available:

Merz E, Kozakiewicz T, Reyes M, Ebi C, Isles P, Baity-Jesi M et al. Underwater dual-magnification imaging for automated lake plankton monitoring. Water Res. 2021;203:117524. Available:

Raju P, Moorthy K, Selvaraju A. Techniques in fixation and preservation of marine copepods.


Parmar TK, Rawtani D, Agrawal YK. Bioindicators: the natural indicator of environmental pollution. Front Life Sci. 2016;9(2):110-8. Available:

Yang J, Zhang X, Xie Y, Song C, Zhang Y, Yu H et al. Zooplankton community profiling in a eutrophic freshwater ecosystem-lake Tai Basin by DNA metabarcoding. Sci Rep. 2017;7(1):1773. Available: