Insecticidal and Repellent Activity of Plectranthus amboinicus (Lour.) Spreng Leaf Extracts Against Callosobruchus maculatus (Fab.)


Published: 2023-05-05

DOI: 10.56557/upjoz/2023/v44i73474

Page: 85-100

C. Shunmugadevi

PG and Research Department of Zoology, PMT College, Melaneelithanallur-627637, Tenkasi, Affiliated to Manonmananiam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.

P. Palanisamy

Department of Chemistry, Pioneer Kumaraswamy College, Nagercoil, Affiliated to Manonmananiam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.

S. Anbu Radhika *

PG and Research Department of Zoology, PMT College, Melaneelithanallur-627637, Tenkasi, Affiliated to Manonmananiam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Natural pesticides derived from plant-based substances are effective alternative to conventional pesticides. A study was conducted on the biopesticide chemicals extracted from powdered. P. amboinicus leaves using different solvents and their effectiveness against cowpea beetles, Callosobruchus maculatus. In this study, leaf powders of P. amboinicus were extracted with various solvents and tested qualitatively and quantitatively for phytochemical constituents using GC-MS. The highest concentrations of terpenoids, fatty acids, phenolic compounds, and steroids were found in petroleum benzine and ethanolic extracts. This insecticidal effect is attributed in part to the presence of secondary metabolites identified in the extracts. These petroleum benzine extracts of P. amboinicus also contained biopesticides such as thymol, beta caryophyllene, farnesol, phytol, Codlelure, (Z)-11-Hexadecenal, Erucic acid, and squalene. A higher repellency (44.8±0.8%) was achieved at a higher concentration (50 mg/ml) of petroleum benzene extract of P. amboinicus after 360 minutes of treatment followed by ethanol extract (40.8±1.49%) and, benzene (37.6±0.97%), chloroform (36.8±0.8%) and water extract (34.4±0.97%). We measured the levels of toxicity after 24 hours, 48 hours, and 72 hours of exposure. After 72 hours, Petroleum benzene caused the highest level of toxicity (LD50 = 20.89 mg/ml) of Callosobruchus maculatus, followed by ethanol (LD50=28.18 mg/ml), water (LD50 = 32.35 mg/ml), chloroform (LD50 = 40.73mg/ml and Benzene (LD50 = 46.77mg/ml). Based on our results, we suggest P. amboinicus phytocompounds are helpful in protecting stored grains from Callosobruchus maculatus.

Keywords: Bioinsecticide, Callosobruchus maculates, P. amboinicus, phytochemical, repellent activity and toxicity

How to Cite

Shunmugadevi , C., Palanisamy , P., & Radhika , S. A. (2023). Insecticidal and Repellent Activity of Plectranthus amboinicus (Lour.) Spreng Leaf Extracts Against Callosobruchus maculatus (Fab.). UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(7), 85–100.


Download data is not yet available.


Oerke EC, Dehne HW. Safeguarding production – losses in major crops and the role of crop protection. Crop Prot. 2004; 23(4):275-85. DOI: 10.1016/j.cropro.2003.10.001

Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP. The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci. 2011;366(1573):1987-98. DOI: 10.1098/rstb.2010.0390, PMID 21624919.

Van D, Paveley N, Shaw M, Hobbelen P, Oliver R BF. The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol. 2011; 60(4):597-606. DOI: 10.1111/j.1365-3059.2011.02439.x

Khater HF. Prospects of botanical biopesticides in insect pest management. Pharmacologia. 2012;3(12):641-56.


McDougall P. R&D Expenditure in 2007 and expectations for 2012. Final report for Crop Life America and the European Crop Protection Association. Phillips McDougall AgriService. 2010. The cost of new agrochemical product discovery, development and registration in;1995:2000 and 2005-8.

Regnault-Roger C, Philogéne BJR. Past and current prospects for the use of botanicals and plant allelochemicals in integrated pest management. Pharm Biol. 2008;46(1-2):41-52. DOI: 10.1080/13880200701729794

Seiber JN, Coats J, Duke SO, Gross AD. Biopesticides: state of the art and future opportunities. J Agric Food Chem. 2014; 62(48):11613-9. DOI: 10.1021/jf504252n, PMID 25406111.

Miresmailli S, Isman MB. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014;19(1):29-35. DOI: 10.1016/j.tplants.2013.10.002, PMID 24216132.

Coloma AG, Reina M, Diaz CE, Fraga BM. Natural product-based biopesticides for insect. In comprehensive natural products II. Chem Biol. 2010;3:237-68.

Arumugam G, Swamy MK, Sinniah UR. Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules. 2016;21(4):369. DOI: 10.3390/molecules21040369, PMID 27043511.

Wadikar DD, Patki PE. Coleus aromaticus: A therapeutic herb with multiple potentials. J Food Sci Technol. 2016;53(7):2895-901. DOI: 10.1007/s13197-016-2292-y, PMID 27765960.

Jimmy JL. Coleus aromaticus Benth: An update on its bioactive constituents and medicinal properties. All Life. 2021; 14(1):756-73. DOI: 10.1080/26895293.2021.1968959

Singh M, Lal K, Singh SB, Singh M. Effect of calotropis (Calotropis procera) extract on infestation of termite (Odontotermes obesus) in sugarcane hybrid. Indian J Agric Sci. 2002;72:439-41.

Singh G, Singh OP, Prasad YR, de Lampasona MP, Catalan C. Studies on essential oils. Part 33. chemical and insecticidal investigations on leaf oil of Coleus amboinicus (Lour). Flavour Fragr J. 2002;17(6):440-2. DOI: 10.1002/ffj.1123

Satongrod B, Wanna R. Chemical composition and bioactivity of essential oil from Indian borage (Plectranthus amboincus (Lour.) Spreng) against Callosobruchus maculatus (f.). Int J Agric Technol. 2020;16:1243-56.

Lima MA, Oliveira FFM, Gomes GA, Lavor PL, Santiago GM, Nagao-Dias AT, et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 2011;10:11716-20.

Verma RS, Padalia RC, Chauhan A. Essential oil composition of Coleus aromaticus Benth. from Uttarakhand. J Essent Oil Bear Plants. 2012;15(2): 174-9. DOI: 10.1080/0972060X.2012.10644033

Jaya JP, Singh P, Prakash B, Dubey NK. Insecticidal activity of Ageratum conyzoides L., Coleus aromaticus Benth. and Hyptis suaveolens (L.) Poit essential oils as fumigant against storage grain insect Tribolium castaneum Herbst. J Food Sci Technol. 2014;51(9):2210-5. DOI: 10.1007/s13197-012-0698-8, PMID 25190885.

Radha R, Sermakkani M, Thangapandian V. Evaluation of phytochemical and antimicrobial activity of Andrographis paniculata Nees (Acanthaceae) aerial parts. Int J Pharm Life Sci. 2011;2(2):562-7.

Kumoro AC, Hasan M, Singh H. Effects of solvent properties on the Soxhlet extraction of diterpenoid lactones from Andrographis paniculate leaves. Sci Asia. 2009;35:306-9.

Yadav RNS, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3(12):10-4.

Stein S. Mass spectral reference libraries: an ever-expanding resource for chemical identification. Anal Chem. 2012;84(17): 7274-82. DOI: 10.1021/ac301205z, PMID 22803687.

Hübschmann HJ. Handbook of GC-MS: fundamentals and applications. John Wiley & Sons; 2015.

Tapondjou AL, Adler C, Fontem DA, Bouda H, Reichmuth C. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val. J Stored Prod Res. 2005;41(1):91-102. DOI: 10.1016/j.jspr.2004.01.004

Nerio LS, Olivero-Verbel J, Stashenko EE. Repellent activity of essential oils from seven aromatic plants grown in Colombia against Sitophilus zeamais Motschulsky (Coleoptera). J Stored Prod Res. 2009; 45(3):212-4. DOI: 10.1016/j.jspr.2009.01.002

Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18(2):265-7. DOI: 10.1093/jee/18.2.265a

Finny DJ. Probit analysis. London: Cambridge University Press. 1971;333.

Fazil M, Srinivasa Rao A, Shaik Rasheed A, A, Ibrahim M. Phytochemical studies and antioxidant activity of Melia azedarach linn leaves by dpph scavenging assay. Int J Pharm Appl. 2012;3(1):271-6.

Leela DJeya, Irudaya Monisha G, Anitha S. Immaculate, A. Rosaline Vimala. Studies on Phytochemical, Nutritional Analysis and Screening of in Vitro Biological activities of Meliadubia Leaf Extract. J. Int J Sci Eng Res. 2016;7(8): 56-68.

Nikolaou P, Marciniak P, Adamski Z, Ntalli N. Controlling stored products’ pests with plant secondary metabolites: a review. Agriculture. 2021;11(9):879. DOI: 10.3390/agriculture11090879

Wink M, Schimmer O. Modes of action of defensive secondary metabolites. In: Wink M, editor. Functions of plant secondary metabolites and their exploitation in biotechnology. Annual plant Reviews No. 3. Sheffield: Sheffield Academic Press. 1999;17-133.

Raffa KF, Priester TM. Synergists as research tools and control agents in agriculture. J Agric Entomol. 1985;2:27-45.

Berbehenn RV, Martin MM, Hagerman AE. Reassessment of the roles of the peritrophic envelope and hydrolysis in protecting polyphagous grasshoppers from ingested hydrolyzable tannins. J Chem Ecol. 1996;22(10):1901—4919.

Barbehenn RV, Martin MM. Tannin sensitivity in larvae oL Malacosoma Dis stria (Lepidoptera): roles of the pertitrophic envelope and midgut oxidation. J Chem Ecol. 1994;20(8):1985-2001. DOI: 10.1007/BF02066238, PMID 24242724.

Henn MW. Adsorption von Tanninen aus Eichenblattern an Kohlen e hydrathaltiger Verbindungen. Mitt Dtsch Entomol Ges. 1997;11:495-9.

Mohamad S. Fathiyah, and S. Aziz, S. Procedia Eng. The susceptibility of aphids, Aphis gossypii glover to lauric acid based natural pesticide. 2013;53:20-8.

Marshall Edward F. Cholecalciferol: A unique toxicant for rodent control. In: Proceedings of the eleventh vertebrate pest conference. 1984;22-35.

Ayub K. Biopesticides: alternatives for management of Callosobruchus maculates. J Biopesticides. 2021;14(1):59-78.37.

Al-Rubaye AF, Hameed IH, Kadhim MJ. A Review: Uses of gas chromatography-mass spectrometry (GC-MS) technique for analysis of bioactive natural compounds of some plants. Int J Toxicol Pharmacol Res. 2017;9(1):81-5.

DOI: 10.25258/ijtpr.v9i01.9042

Jantan I, Zaki ZM. Development of environment-friendly insect repellents from the leaf oils of selected Malaysian plants. Asean Rev Biodivers Environ Conservafion (ARBEC). 1998;6:1-7.

Jaenson TG, Pålsson K, Borg-Karlson AK. Evaluation of extracts and oils of mosquito (Diptera: Culicidae) repellent plants from Sweden and Guinea-Bissau. J Med Entomol. 2006;43(1):113-9. DOI: 10.1093/jmedent/43.1.113, PMID 16506457.

Park BS, Choi WS, Kim JH, Kim KH, Lee SE. Monoterpenes from thyme (Thymus vulgaris) as potential mosquito repellents. J Am Mosq Control Assoc. 2005;21(1): 80-3. DOI:10.2987/8756-971X(2005)21[80:MFTTVA]2.0.CO;2, PMID 15825766.

Gillij YG, Gleiser RM, Zygadlo JA. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol. 2008;99(7): 2507-15. DOI: 10.1016/j.biortech.2007.04.066, PMID 17583499.

Kiran SR, Devi PS. Evaluation of mosquitocidal activity of essential oil and sesquiterpenes from leaves of Chloroxylon Swietenia DC. Parasitol Res. 2007; 101(2):413-8. DOI: 10.1007/s00436-007-0485-z, PMID 17520288.

Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: A review. J Am Mosq Control Assoc. 1991;7(2):210-37. PMID 1680152.

Odalo JO, Omolo MO, Malebo H, Angira J, Njeru PM, Ndiege IO, et al. Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop. 2005;95(3):210-8. DOI: 10.1016/j.actatropica.2005.06.007, PMID 16018957.

Tunón H, Thorsell W, Mikiver A, Malander I. Arthropod repellency,especially tick (Ixodes ricinus), exerted by extract from Artemisia abrotanum and essential oil from flowers of Dianthus caryophyllum. Fitoterapia. 2006;77(4):257-61. DOI: 10.1016/j.fitote.2006.02.009, PMID 16624501.

Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin, rop Protection. 2010;29:943-20.

Moura E, Faroni A, Zanuncio LD, Heleno JC, Figueiredo Prates FF, LH. Insecticidal activity of Vanillosmopsis arborea essential oil and of its major constituent α- bisabolol against Callosobruchus maculatus (Coleoptera: Chrysomelidae). Sci Rep. 2019;9(3723):1-8.

Fotso TG, Tofel HK, Abdou JP, Tchao N, Zourmba CMA, Nukenine C, et al. Control of Callosobruchus maculatus (Coleoptera: Chrysomelidae) using fractionated extracts from Cameroonian Hemizygia welwitschii (Lamiaceae) Leaf on stored Vigna unguiculata (Fabales: Fabaceae). J Insect Sci. 2019;19(2): 22:1-9. DOI: 10.1093/jisesa/iez029, PMID 31222325.

Wink M. Interference of alkaloids with neuroreceptors and ion channels. Stud Nat Prod Chem. 2000;21:3-122.

DOI: 10.1016/S1572-5995(00)80004-6

Enan EE. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol. 2001;130(3):325-37.

DOI: 10.1016/s1532-0456(01)00255-1, PMID 11701389.

Youssefi MR, Tabari MA, Esfandiari A, Kazemi S, Moghadamnia AA, Sut S, et al. Efficacy of two monoterpenoids, carvacrol and thymol, and their combinations against eggs and larvae of the west Nile vector Culex pipiens. Molecules. 2019;24(10):1867. DOI: 10.3390/molecules24101867, PMID 31096594.

Tabari MA, Youssefi MR, Maggi F, Benelli G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae). Vet Parasitol. 2017;245(15):86-91.

DOI: 10.1016/j.vetpar.2017.08.012, PMID 28969843.

Gershenzon J, Croteau R. Terpenoids. In: Rosenthal GA, Berenbaum MR, editors. Herbivores: Their interactions with secondary plant metabolites. 2nd ed. Orlando, FL: Academic Press. 1991;165-219.

Gašić S, Tanović B. Biopesticide formulations, possibility of application and future trends. Pestic Fitomedicina. 2013; 28(2):97-102. DOI: 10.2298/PIF1302097G

Imai T, Tsuchiya S, Morita K; 1995. Fatty acid insecticide and insecticidal method using the same. European patent application EP0663147A1. Available:

Kosini D, Nukenine EN. Bioactivity of Novel Botanical Insecticide from Gnidia kaussiana (Thymeleaceae) against Callosobruchus maculatus (Coleoptera: Chrysomelidae) in Stored Vigna subterranea (Fabaceae) Grains. J Insect Sci. 2017;17(1):1-7. DOI: 10.1093/jisesa/iex004, PMID 28423430.

Kiewnick S. Practicalities of developing and registering microbial biological control agents. CAB Rev. 2007;2(013):1-11.

Yang P, Ma Y. Repellent effect of plant essential oils against Aedes albopictus. J Vector Ecol. 2005;30(2):231-4. PMID 16599157.