The Risk of Genetic Variants and Socioeconomic Lifestyle for Insulin Resistance Traits: A Mini-review


Published: 2023-08-07

DOI: 10.56557/upjoz/2023/v44i173591

Page: 37-45

Lina M. Alneghery *

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, P.O. Box-90950 Riyadh-11623, Saudi Arabia.

*Author to whom correspondence should be addressed.


Insulin resistance is a complex metabolic characteristic that increases the risk of developing cardiovascular disease which results from hypertension and dyslipidemia. The interaction of hereditary and environmental are factors driving the emergence of such disorders. Molecular techniques have now enabled the discovery of uncommon variations linked to the etiology of these disorders. Lipid metabolism is connected to various genetic variations associated with the etiology of metabolic syndrome. There are several genetic variants including epigenetic modifications alongside immunological status interference with pathogenic infectious that are directly related to insulin resistance and glucose metabolism. However, functional studies are required to determine the role of various genetic variations and other distinct factors in the development of insulin resistance. This review aims to give a broad overview of the interference of these genetic variants in the occurrence of insulin resistance. We also provide a summary of current developments in the environmental and immune factors associated with type 2 diabetes.

Keywords: IR, genetic variation, cardiovascular disease, T2DM

How to Cite

Alneghery , L. M. (2023). The Risk of Genetic Variants and Socioeconomic Lifestyle for Insulin Resistance Traits: A Mini-review. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(17), 37–45.


Download data is not yet available.


Seong J, Kang JY, Sun JS, Kim V. Hypothalamic inflammation and obesity: A mechanistic review. Arch Pharm Res. 2019;42(5):383–392. DOI: 10.1007/s12272-019-01138-9.

Hossan T, Kundu S, Alam SS, Nagarajan S. Epigenetic modifications associated with the pathogenesis of type 2 diabetes mellitus. Endocr Metab Immune Disord Drug Targets. 2019; 19(6):775–786. DOI: 10.2174/1871530319666190301145545.

Yang KC, Hung HF, Lu CW, Chang HH, Lee LT, Huang KC. Association of non-alcoholic fatty liver disease with metabolic syndrome independently of central obesity and insulin resistance. Sci Rep. 2016;6. DOI: 10.1038/srep27034.

Reaven GM. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med. 2005;47(4): 201–210.

Brown A, Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome,” Curr Cardiol Rep. 2016;18 DOI: 10.1007/s11886-016-0755-4.

Sookoian S, Pirola CJ. Epigenetics of insulin resistance: An emerging field in translational medicine. Curr Diab Rep. 2013;13(2):229–237. DOI: 10.1007/s11892-012-0361-9.

Al-Baghli NA, Al-Ghamdi AJ, Al-Turki KA, Al Elq AH, El-Zubaier, Bahnassy A. Prevalence of diabetes mellitus and impaired fasting glucose levels in the Eastern Province of Saudi Arabia: results of a screening campaign. Singapore Med J. 2010;51(12):923–930.

World Health Organisation. Report of the fourth meeting of the WHO Technical Advisory Group on Diabetes; 2022.

Mir MM et al. Differential association of selected adipocytokines, adiponectin, leptin, resistin, visfatin and chemerin, with the pathogenesis and progression of type 2 diabetes mellitus (T2DM) in the Asir Region of Saudi Arabia: A Case Control Study. J Pers Med. 2022;12(5). DOI: 10.3390/jpm12050735.

Alowfi A, Binladen C, Irqsous S, Khashoggi A, Khan MA, Calacattawi R. Metabolic syndrome: Prevalence and risk factors among adolescent female intermediate and secondary students in saudi Arabia. Int J Environ Res Public Health. 2021;18(4):1–13.

DOI: 10.3390/ijerph18042142.

Tanti JF, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol. 2009;9(6):753–762. DOI: 10.1016/j.coph.2009.07.004.

Jezewski AJ, Larson JJ, Wysocki B, Davis PH, Wysocki T. A novel method for simulating insulin mediated GLUT4 translocation. Biotechnol Bioeng. 2014 ;111(12):2454–2465. DOI: 10.1002/bit.25310.

Tamemoto H et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 1994;372(6502):182–186. DOI: 10.1038/372182a0.

Burguete-Garcia AI et al. Association of Gly972Arg polymorphism of IRS1 gene with type 2 diabetes mellitus in lean participants of a national health survey in Mexico: A candidate gene study. Metabolism. 2010;59(1):38–45.

DOI: 10.1016/j.metabol.2009.07.007.

Huri HZ, Makmor-Bakry M, Hashim R, Mustafa N, Wan Ngah WZ. Optimisation of glycaemic control during episodes of severe/acute hyperglycaemia in patients with type 2 diabetes mellitus. Int J Clin Pharm. 2012;34(6):863–870. DOI: 10.1007/s11096-012-9682-7.

Almind K, Bjørbaek C, Vestergaard H, Hansen T, Echwald S, Pedersen O. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus.,” Lancet. 1993;342(8875):828–832. DOI: 10.1016/0140-6736(93)92694-o.

Morini E et al. IRS1 G972R polymorphism and type 2 diabetes: A paradigm for the difficult ascertainment of the contribution to disease susceptibility of ‘low-frequency-low-risk’ variants.,” Diabetologia. 2009;52 (9):1852–1857.

DOI: 10.1007/s00125-009-1426-4.

Alsalman HA, Kaabi YA. Lack of association between the insulin receptor substrates-1 Gly972Arg polymorphism and type-2 diabetes mellitus among Saudis from Eastern Saudi Arabia. Saudi Med J. 2015;36(12):1420–1424 DOI: 10.15537/smj.2015.12.12904.

Bali P, Im HI, Kenny PJ. Methylation, memory and addiction. Epigenetics. 2011;6(6):671–674. DOI: 10.4161/epi.6.6.15905.

Fraga MF et al. Epigenetic differences arise during the lifetime of monozygotic twins; 2005.


Vetter C et al. Night shift work, genetic risk, and type 2 diabetes in the UK biobank,. Diabetes Care. 2018;41(4):762–769

DOI: 10.2337/dc17-1933.

Maude H, Sanchez-Cabanillas C, Cebola I. Epigenetics of hepatic insulin resistance. Frontiers in Endocrinology, vol. 12. Frontiers Media S.A., May 11, 2021.

DOI: 10.3389/fendo.2021.681356.

Cheng Z, Almeida FA. Mitochondrial alteration in type 2 diabetes and obesity: An epigenetic link. Cell Cycle. Taylor and Francis Inc. 2014;13(6):890–897. DOI: 10.4161/cc.28189.

Rönn T et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia. 2008;51(7):1159–1168 DOI: 10.1007/s00125-008-1018-8.

Ling C et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. Journal of Clinical Investigation. 2007;117 (11):3427–3435 DOI: 10.1172/JCI30938.

Zheng LD et al. Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin Epigenetics. 2015;7(1). DOI: 10.1186/s13148-015-0093-1.

Brem H, Tomic-Canic M. Cellular and molecular basis of wound healing in diabetes. Journal of Clinical Investigation. 2007;117(5):1219–1222.

DOI: 10.1172/JCI32169.

Chávez-Reyes J et al. Susceptibility for some infectious diseases in patients with diabetes: The key role of glycemia. Frontiers in Public Health. Frontiers Media S.A. 2021;9. DOI: 10.3389/fpubh.2021.559595.

Casqueiro J, Casqueiro J, Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab. 2012;16(7):27. DOI: 10.4103/2230-8210.94253.

Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A. Tumor necrosis factor α-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. Journal of Biological Chemistry. 1995; 270(40):23780–23784.

DOI: 10.1074/jbc.270.40.23780.

Bo S et al. Effects of meal timing on changes in circulating epinephrine, norepinephrine, and acylated ghrelin concentrations: A pilot study. Nutr Diabetes. 2017;7(12).

DOI: 10.1038/s41387-017-0010-0.

Govender N, Khaliq OP, Moodley J, Naicker T. Insulin resistance in COVID-19 and diabetes. Primary Care Diabetes. Elsevier Ltd. 2021;15(4): 629–634.

DOI: 10.1016/j.pcd.2021.04.004.

Li G, Hu R, Gu X. A close-up on COVID-19 and cardiovascular diseases. Nutrition, Metabolism and Cardiovascular Diseases, Elsevier B.V. 2020;30(7):1057–1060. DOI: 10.1016/j.numecd.2020.04.001.

Huang C et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.

Bailey CJ. Treating insulin resistance: Future prospects. Diabetes and Vascular Disease Research. 2007;4(1):20–31.

DOI: 10.3132/dvdr.2007.002.