DNA Damage in Working Individuals Occupationally Exposed to Cooking Oil Fumes Using Peripheral Blood Comet Assay

PDF

Published: 2023-09-01

DOI: 10.56557/upjoz/2023/v44i193621

Page: 84-91


Aditi Chaudhary

Department of Life Sciences, Christ (Deemed to be) University, Bengaluru-560029, Karnataka, India.

Manikantan Pappuswamy *

Department of Life Sciences, Christ (Deemed to be) University, Bengaluru-560029, Karnataka, India.

*Author to whom correspondence should be addressed.


Abstract

Cooking oil fumes (COFs) endorses major genetic changes in human health by endorsing physical stress, which plays an important role in producing physiological and genetic alterations. COFs combined with smoking habits provide a significant risk that exacerbates genetic changes.  The DNA damage was assessed in the current investigation utilizing a blood cell comet test on 30  desk job employees of companies who were occupationally exposed to COFs and 30 healthy persons. Only the experimental individuals were categorized as smokers or nonsmokers depending on the duration of their exposure. The Student's t-test was used to assess the data statistically. The DNA damage percentage of smoking experimental was observed to be 10.2±0.3% that is much elevated to the 7.1±0.2% in control smokers participants of 31-35 years of age. The investigation's findings showed that there was copious DNA damage among the workers. Office workers who smoke cigarettes collectively cause more DNA damage than they prevent. 

Keywords: Cooking Oil Fumes (COFs), smoking, genotoxicity, cytogenetic, health


How to Cite

Chaudhary, A., & Pappuswamy, M. (2023). DNA Damage in Working Individuals Occupationally Exposed to Cooking Oil Fumes Using Peripheral Blood Comet Assay. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(19), 84–91. https://doi.org/10.56557/upjoz/2023/v44i193621

Downloads

Download data is not yet available.

References

Tran VV, Park D, Lee YC. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int J Environ Res Public Health. 2020 Apr 23;17(8):2927.

DOI: 10.3390/ijerph17082927

Kumar GS, Kulkarni M, Rathi N. Evolving Food Choices Among the Urban Indian Middle-Class: A Qualitative Study. Front Nutr. 2022 Mar 29;9:844413.

DOI: 10.3389/fnut.2022.844413

Kearney J. Food consumption trends and drivers. Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2793-807. DOI: 10.1098/rstb.2010.0149

Gall ET, Carter EM, Earnest CM, Stephens B. Indoor air pollution in developing countries: research and implementation needs for improvements in global public health. Am J Public Health. 2013 Apr;103(4):e67-72.

DOI: 10.2105/AJPH.2012.300955

Manchanda SC, Passi SJ. Selecting healthy edible oil in the Indian context. Indian Heart J. 2016 Jul-Aug;68(4):447- 9. DOI: 10.1016/j.ihj.2016.05.004

Goswami, Garima, Bora, Rajni, Rathore, Mahipat. Oxidation of cooking oils due to repeated frying and human health; 2015.

Onopiuk A, Kołodziejczak K, Szpicer A, Wojtasik-Kalinowska I, Wierzbicka A, Półtorak A. Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing.Trends in Food Science & Technology. 2021;115:366-379.

ISSN 0924-2244

Available:https://doi.org/10.1016/j.tifs.2021.06.043

Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de et al. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int J Mol Sci. 2021 Jun 2;22(11):6010. DOI: 10.3390/ijms22116010.

Jaewook Lee, Jun-Hyun Jeong, Shinwoong Park, Kwang-Geun Lee. Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed foods and their raw materials.Food Control. 2018;92:286-292.

ISSN 0956-7135. Available:https://doi.org/10.1016/j.foodcont.2018.05.012

Feifei Huang, Lei Zhang, Moqin Zhou, Jianwen Li, Qing Liu, Bo Wang, Ke Deng, Pingping Zhou, Yongning Wu. Polycyclic aromatic hydrocarbons in the Chinese diet: conta mination characteristics, indicator screening, and health risk assessment. Food Additives & Contaminants: Part A. 2023;40(5):625-640.

Zuzana Zelinkova, Thomas Wenzl. The Occurrence of 16 EPA PAHs in Food – A Review, Polycyclic Aromatic Compounds. 2015;35(2-4):248-284. DOI: 10.1080/10406638.2014.918550

Li S, Wang L, Guan S, Zhou S, Chen Y. In vitro and in vivo low-dose exposure of simulated cooking oil fumes to assess adverse biological effects. Scientific Reports. 2022;12(1):15691.

Available:https://doi.org/10.1038/s41598-022-19558-x.

Chen HC, Wu CF, Chong IW, et al. Exposure to cooking oil fumes and chronic bronchitis in nonsmoking women aged 40 years and over: A health-care based study. BMC Public Health. 2018;18:246.

Available:https://doi.org/10.1186/s12889-018-5146-x.

Saha SP, Bhalla DK, Whayne TF Jr, Gairola C. Cigarette smoke and adverse health effects: An overview of research trends and future needs. Int J Angiol. 2007 Fall;16(3):77-83.

DOI: 10.1055/s-0031-1278254 PMID: 22477297; PMCID: PMC2733016.

Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung Cancer. Annals of Global Health. 2019;85(1):8.

DOI: https://doi.org/10.5334/aogh.2419.

Pappuswamy M, Meyyazhagan A, Balasubramanian B, Bhotla HK, Pushparaj K, Eswaran M, et al. Cytogenetic Consequences of Food Industry Workers Occupationally Exposed to Cooking Oil Fumes (COFs). Asian Pac J Cancer Prev. 2021 Nov 1;22(11):3591-3599. DOI: 10.31557/APJCP.2021.22.11.3591

PMID: 34837917; PMCID: PMC9068188.

Linjing Deng, Yongsheng Ma, Ping Ma, Yang Wu, Xu Yang, Qihong Deng. Toxic effect of cooking oil fume (COF) on lungs: Evidence of endoplasmic reticulum stress in rat.Ecotoxicology and Environmental Safety. 2021;221:112463.

ISSN 0147-6513. Available:https://doi.org/10.1016/j.ecoenv.2021.112463.

Lin J, Ni S, Shi Q, Xiong Z, Kang J, Sun X, et al. Environmental exposure to cooking oil fumes and fatty liver disease. Ann Palliat Med. 2020 Nov;9(6):3810-3817. DOI: 10.21037/apm-20-1730

Chan CC, Lin LY, Lai CH, Chuang KJ, Wu MT, Pan CH. Association of Particulate Matter from Cooking Oil Fumes with Heart Rate Variability and Oxidative Stress. Antioxidants (Basel). 2021 Aug 23;10(8): 1323.

DOI: 10.3390/antiox10081323 PMID: 34439570; PMCID: PMC8389278.

Bigert, Carolina, Maria Lönn, Maria Feychting, Bengt Sjögren, Marie Lewné, Per Gustavsson. Incidence of Myocardial Infarction among Cooks and Other Restaurant Workers in Sweden 1987—2005. Scandinavian Journal of Work, Environment & Health. 2013;39(2):204–11. Available:http://www.jstor.org/stable/23558253.

Jiang X, Wu J, Wang J, Huang R. Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob Induc Dis. 2019 Apr 12;17:29. DOI: 10.18332/tid/105844 PMID: 31582940; PMCID: PMC6752112.

Cordelli E, Bignami M, Pacchierotti F. Comet assay: a versatile but complex tool in genotoxicity testing. Toxicol Res (Camb). 2021 Jan 5;10(1):68-78. DOI: 10.1093/toxres/tfaa093 PMID: 33613974; PMCID: PMC7885189.

Wang, Weidong, Xiwei Shen, Siqi Zhang, Ruixue Lv, Ming Liu, Wang Xu, Yu Chen, and Huiyu Wang. 2022. "Research on Very Volatile Organic Compounds and Odors from Veneered Medium Density Fiberboard Coated with Water-Based Lacquers Molecules 27, no. 11: 3626. https://doi.org/10.3390/molecules27113626.

Tao C, He L, Zhou X, Li H, Ren Q, Han H, et al. Review of Emission Characteristics and Purification Methods of Volatile Organic Compounds (VOCs) in Cooking Oil Fume. Processes. 2023;11(3): 705.

Available:https://doi.org/10.3390/pr11030705

Chen, TY., Fang, YH., Chen, HL. et al. Impact of cooking oil fume exposure and fume extractor use on lung cancer risk in non-smoking Han Chinese women. Sci Rep. 2020;10:6774.

Available:https://doi.org/10.1038/s41598-020-63656-7

Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol. 2022 Jul 22;13:899574. DOI: 10.3389/fimmu.2022.899574 PMID: 35935942; PMCID: PMC9354717.

Ladeira C, Smajdova L. The use of genotoxicity biomarkers in molecular epidemiology: applications in environmental, occupational and dietary studies. AIMS Genet. 2017 Aug 11;4(3): 166-191.

DOI: 10.3934/genet.2017.3.166 PMID: 31435507; PMCID: PMC6690241.

Chiang TA, Wu PF, Ko YC. Identification of carcinogens in cooking oil fumes. Environmental Research. 1999;81(1):18–22. Available:https://doi.org/10.1006/enrs.1998.3876

Rojas-Molina Mar, Campos-Sánchez Juan, Analla Mohamed, Muñoz-Serrano Andrés, Alonso-Moraga A. Genotoxicity of vegetable cooking oils in the Drosophila wing spot test. Environmental and Molecular Mutagenesis. 2005;45:90-5. DOI: 10.1002/em.20078

Lai CH, Jaakkola JJ, Chuang CY, Liou SH, Lung SC, Loh CH, Yu DS, Strickland PT. Exposure to cooking oil fumes and oxidative damages: A longitudinal study in Chinese military cooks. J Expo Sci Environ Epidemiol. 2013 Jan-Feb;23(1):94-100. DOI: 10.1038/jes.2012.87 Epub 2012 Sep 12.

Maluf, Sharbel, Erdtmann, Bernardo. Evaluation of occupational genotoxic risk in a Brazilian hospital. Genetics and Molecular Biology. 2000;23. DOI: 10.1590/S1415-47572000000200040

Maluf SM, Erdtmann B. Follow-up study of genetic damage in lymphocytes of pharmacists and nurses handling antineoplastics drugs evaluated by cytokinesis-block micronuclei analysis and single cell gel electrophoresis assay. Mutat Res. 2000;471:21-7.

Grizzle WE, Srivastava S, Manne U. Translational pathology of neoplasia. Cancer Biomark. 2010;9(1-6):7-20.

DOI: 10.3233/CBM-2011-0159 PMID: 22112467; PMCID: PMC3445029.

Lovsin Barle E, Winkler GC, Glowienke S, Elhajouji A, Nunic J, Martus HJ. Setting Occupational Exposure Limits for Genotoxic Substances in the Pharmaceutical Industry. Toxicol Sci. 2016 May;151(1):2-9.

DOI: 10.1093/toxsci/kfw028 PMID: 27207978; PMCID: PMC4914798.

Amaya Azqueta, Carina Ladeira, Lisa Giovannelli, Elisa Boutet-Robinet, Stefano Bonassi, Monica Neri, et al. Application of the comet assay in human biomonitoring: An hCOMET perspective. Mutation Research/Reviews in Mutation Research. 2020;783:108288. ISSN 1383-5742. Available:https://doi.org/10.1016/j.mrrev.2019.108288.

Liman R, Ciğerci İH, Öztürk NS. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic Biochem Physiol. 2015 Feb;118:38-42.

DOI: 10.1016/j.pestbp.2014.11.007 Epub 2014 Nov 20. PMID: 25752428.

Jayakumar R, Sasikala K. Evaluation of DNA damage in jewellery workers occupationally exposed to nitric oxide. Environ Toxicol Pharmacol. 2008 Sep; 26(2):259-61. DOI: 10.1016/j.etap.2008.03.016 Epub 2008 Apr 6.

PMID: 21783919.

Chandirasekar R, Murugan K, Muralisankar T, Uthayakumar V, Jayakumar R, Mohan K, et al. Genotoxic effects of tobacco use in residents of hilly areas and foot hills of Western Ghats, Southern India. Sci Rep. 2019 Oct 17;9(1):14898. DOI: 10.1038/s41598-019-51275-w PMID: 31624274; PMCID: PMC6797791

Rojas E, Lorenzo Y, Haug K, Nicolaissen B, Valverde M. Epithelial cells as alternative human biomatrices for comet assay. Front Genet. 2014 Nov 28;5:386. DOI: 10.3389/fgene.2014.00386 PMID: 25506353; PMCID: PMC4246922.

Song X, Ma W, Xu X, Liu T, Xiao J, Zeng W, et al. The Association of Domestic Incense Burning with Hypertension and Blood Pressure in Guangdong, China. Int J Environ Res Public Health. 2017 Jul 14;14(7):788.

DOI: 10.3390/ijerph14070788 PMID: 28708101; PMCID: PMC5551226.

Goel A, Ola D, Veetil AV. Burden of disease for workers attributable to exposure through inhalation of PPAHs in RSPM from cooking fumes. Environ Sci Pollut Res Int. 2019 Mar;26(9):8885- 8894.

DOI: 10.1007/s11356-019-04242-x Epub 2019 Feb 4. PMID: 30719671.