Kaempferol Metal Complexes: A Multifaceted Approach to Synthesis, Characterization and Biological Activities

PDF

Published: 2023-10-26

DOI: 10.56557/upjoz/2023/v44i223713

Page: 19-35


Sohaila Syed

Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India.

Jyothi Y. *

Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India.

Deepsika Chhetri

Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India.

Lalhriatpuii

Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India.

Dhilipan S.

Department of Pharmacology, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India.

*Author to whom correspondence should be addressed.


Abstract

This extensive review explores kaempferol complexes' synthesis, characterization, and biological activities. Kaempferol, a bioactive flavonoid found in plants, exhibits promising therapeutic properties that can be strengthened through complexing using metal ions. The review discusses different metal ions used for complexation and various synthetic approaches. Characterization techniques such as spectroscopy, crystallography, and mass spectrometry are employed to analyze the structure and properties of these complexes. Investigating the biological activities of kaempferol complexes reveals their diverse effects. This review sheds light on their potential for therapeutic interventions and encourages further research in this field by providing valuable insights into the synthesis, characterization, and biological activities of kaempferol complexes.

Future research directions include improving complex stability, enhancing bioavailability, and exploring novel synthesis strategies. Overall, this comprehensive review underscores the importance of unraveling the characterization of kaempferol complexes to harness their full potential in various fields. The knowledge gained from this review can contribute to developing novel therapeutic agents and promote advancements in using kaempferol complexes for improved health outcomes.

Keywords: Kaempferol, metal complex, flavonoids, characterization, complexation


How to Cite

Syed , S., Jyothi Y., Chhetri , D., Lalhriatpuii, & Dhilipan S. (2023). Kaempferol Metal Complexes: A Multifaceted Approach to Synthesis, Characterization and Biological Activities . UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(22), 19–35. https://doi.org/10.56557/upjoz/2023/v44i223713

Downloads

Download data is not yet available.

References

Russo P, Del Bufalo A, Cesario A. Flavonoids acting on DNA topoisomerases: recent advances and future perspectives in cancer therapy. Curr. Med. Chem. 2012;19(31):5287-93.

Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002;96(2-3):67-202.

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:1–15.

Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 1999;65(4):337-53.

Simunkova M, Barbierikova Z, Jomova K, Hudecova L, Lauro P, Alwasel SH, et al. Antioxidant vs. Prooxidant properties of the flavonoid, kaempferol, in the presence of cu(ii) ions: A ros-scavenging activity, fenton reaction and dna damage study. Int J Mol Sci. 2021;22(4):1–17.

Ohnishi E, Bannai H. Quercetin potentiates TNF-induced antiviral activity. Antiviral Res. 1993;22(4):327–31.

Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1(1):15–31.

Kanadaswami C, Lee LT, Lee PPH, Hwang JJ, Ke FC, Huang YT, et al. The antitumor activities of flavonoids. In Vivo. 2005;19(5):895–910.

Bansal P, Paul P, Mudgal J, Nayak PG, Pannakal ST, Priyadarsini KI, Unnikrishnan MK. Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoid rich fraction of Pilea microphylla (L.) in high fat diet/streptozotocin-induced diabetes in mice. Exp Toxicol Pathol. 2012 Sep 1;64(6):651-8.

Goto S, Handa S. Antithrombotic effects of flavonoid. Circ. 2001;103(4):e23

Mokrzycki K. Anti-atherosclerotic efficacy of quercetin and sodium phenylbutyrate in rabbits. Ina Acad Medicae Stetin. 2000;46:189–200.

Duarte J, Utrilla P, Jimenez J, Tamargo J, Zarzuelo A. Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. Gen Pharmacol.1993 Jul 1;24(4):857-62.

Singh D, Hembrom S, Raj A. Neuroprotective effect of flavonoids: A systematic review. J pharmacogn phytochem. 2019;8(1):699-707.

Iwashina T. Flavonoid properties of five families newly incorporated into the order Caryophyllales. Bull Natl Mus Nat Sci. 2013;39(1):25-51.

Ali AS, Almalki AS, Alharthy BT. Effect of kaempferol on tacrolimus-induced nephrotoxicity and calcineurin b1 expression level in animal model. J Exp Pharmacol. 2020;12:397–407.

Bangar SP, Chaudhary V, Sharma N, Bansal V, Ozogul F, Lorenzo JM. Kaempferol : A flavonoid with wider biological activities and its applications. Crit Rev Food Sci Nutr. 2022:1–25.

Calderon-Montano JM, Burgos-Moron E, Perez-Guerrero C, Lopez-Lazaro M. A Review on the Dietary Flavonoid Kaempferol | BenthamScience. Mini Rev Med Chem. 2011;11(4):298– 344.

Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2(12): 1231–46.

Finger A, Engelhardt UH, Wray V. Flavonol glycosides in tea—kaempferol and quercetin rhamnodiglucosides. J Sci Food Agric. 1991;55(2):313–21.

Wang YC, Chuang YC, Hsu HW. The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chem. 2008;106(1):277–84.

Kluska M, Juszczak M, Żuchowski J, Stochmal A, Woźniak K. Kaempferol and its glycoside derivatives as modulators of etoposide activity in HL-60 cells. Int J Mol Sci. 2021;22(7):3520.

Haidari F, Keshavarz SA, Shahi MM, Mahboob SA, Rashidi MR. Effects of parsley (Petroselinum crispum) and its flavonol constituents, kaempferol and quercetin, on serum uric acid levels, biomarkers of oxidative stress and liver xanthine oxidoreductase aactivity inoxonate-induced hyperuricemic rats. Iran J Pharm Res: IJPR. 2011;10(4):811.

Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 2006;54(8):2951-6.

Gao DF, Xu M, Zhao P, Zhang XY, Wang YF, Yang CR, et al. Kaempferol acetylated glycosides from the seed cake of Camellia oleifera. Food Chem. 2011;124(2):432–6.

Al-Brakati A, Albarakati AJA, Lokman MS, Theyab A, Algahtani M, Menshawi S, et al. Possible role of kaempferol in reversing oxidative damage, inflammation, and apoptosis-mediated cortical injury following cadmium exposure. Neurotox Res. 2021;39(2):198–209.

Guo P, Feng YY. Anti-inflammatory effects of kaempferol, myricetin, fisetin and ibuprofen in neonatal rats. Trop J Pharm Res. 2017;16(8):1819–26.

Alam W, Khan H, Shah MA, Cauli O, Saso L. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing. Molecules. 2020;25(18):4073.

Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, et al. Kaempferol: Antimicrobial properties, sources, clinical, and traditional applications. Int J Mol Sci. 2022; 23(23):15054.

Imran M, Salehi B, Sharifi-Rad J, Gondal TA, Saeed F, Imran A, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules. 2019;24(12):2277.

Imran M, Rauf A, Shah ZA, Saeed F, Imran A, Arshad MU, et al. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phyther Res. 2019; 33(2):263–75.

Wang M, Sun J, Jiang Z, Xie W, Zhang X. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med. 2015;43(2):241–54.

El-Kott AF, Abd-El-Karim M, Khalifa HS, Morsy K, Ibrahim EH, Bin-Jumah M, et al. Kaempferol protects against cadmium chloride-induced hippocampal damage and memory deficits by activation of silent information regulator 1 and inhibition of poly (ADP-Ribose) polymerase-1. Sci Total Environ. 2020;728:138832.

Ren J, Lu Y, Qian Y, Chen B, Wu T, Ji G. Recent progress regarding kaempferol for the treatment of various diseases. Exp Ther Med. 2019;18(4):2759–76.

Shahbaz M, Imran M, Alsagaby SA, Naeem H, Al Abdulmonem W, Hussain M, et al. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int J Food Prop. 2023;26(1):1140–66.

Rajendran P, Rengarajan T, Nandakumar N, Palaniswami R, Nishigaki Y, Nishigaki I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur J Med Chem. 2014;86:103–12.

Alkhalidy H, Moore W, Wang A, Luo J, McMillan RP, Wang Y, et al. Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. J Nutr Biochem. 2018;58:90–101.

Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology. 2018; 26(4):993–1003.

Kaempferol:Chemical-Structure.4444395. R Soc chemistry. 2020

Selvaraj S, Krishnaswamy S, Devashya V, Sethuraman S, Krishnan UM. Flavonoid–metal ion complexes: a novel class of therapeutic agents. Med Res Rev.2014;34(4):677-702.

Fernandez MT, Mira ML, Florêncio MH, Jennings KR. Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J Inorg Biochem. 2002;92(2):105–11.

Aherne SA, O’Brien NM. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med. 2000;29(6):507–14.

Payán-Gómez SA, Flores-Holguín N, Pérez-Hernández A, Piñón-Miramontes M, Glossman-Mitnik D. Computational molecular characterization of the flavonoid Morin and its Pt(II), Pd(II) and Zn(II) complexes. J Mol Model. 2011;17(5):979–85.

Barve A, Chen C, Hebbar V, Desiderio J, Saw CL, Kong AN. Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm. Drug Dispos. 2009;30(7):356-65.

Deng SP, Yang YL, Cheng XX, Li WR, Cai JY. Synthesis, spectroscopic study and radical scavenging activity of kaempferol derivatives: Enhanced water solubility and antioxidant activity. Int J Mol Sci. 2019;20(4):975.

Kostyuk VA, Potapovich AI, Kostyuk TV, Cherian MG. Metal complexes of dietary flavonoids: evaluation of radical scavenger properties and protective activity against oxidative stress in vivo. Cell Mol Biol. 2007;53(1):62-9.

McCleverty, J.A.,Meyer T.J. Comprehensive coordination chemistry.1st Ed. New Mexico. Elsevier;1987.

Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5(57):45853–77.

Tu LY, Pi J, Jin H, Cai JY, Deng SP. Synthesis, characterization and anticancer activity of kaempferol-zinc (II) complex. Bioorg Med Chem Lett. 2016;26(11):2730-4.

Vimalraj S, Saravanan S, Hariprabu G, Yuvashree R, Kanna SK, Sujoy K, et al. Kaempferol-zinc(II) complex synthesis and evaluation of bone formation using zebrafish model. Life Sci. 2020;256:117993.

Abdeyazdan S, Mohajeri M, Saberi S, Mirzaei M, Ayatollahi SA, Saghaei L, et al. Sb(V) kaempferol and quercetin derivative complexes: synthesis, characterization and antileishmanial activities. Iran J Pharm Res. 2022;21(1): e128379.

Shao M, Gang J, Kim S, Yoon M. A new kaempferol-based ru(II) coordination complex, ru(kaem)Cl (DMSO)3: Structure and absorption–emission spectroscopy study. Bull Korean Chem Soc. 2016;37(10):1625–31.

Thangavel P, Viswanath B, Kim S. Synthesis and characterization of kaempferol-based ruthenium (II) complex: A facile approach for superior anticancer application. Mater Sci Eng C. 2018;89:87–94.

Zhang G, Guo J, Zhao N, Wang J. Study of interaction between kaempferol-Eu3+ complex and DNA with the use of the Neutral Red dye as a fluorescence probe. Sensors Actuators, B Chem. 2010; 144(1):239–46.

Wang Q, Huang Y, Zhang J-S, Yang X-B. Synthesis, characterization, DNA interaction, and antitumor activities of La (III) complex with Schiff base ligand derived from Kaempferol and diethylenetriamine. Bioinorganic Chemistry and Applications. 2014;2014:1–9.

Porter LJ, Markham KR. The aluminium(III) complexes of hydroxy-flavones in absolute methanol. Part I. Ligands containing only one chelating site. J Chem Soc C Org. 1970;(2):344–9.

Porter LJ, Markham KR. The aluminium (III) complexes of hydroxyflavones in absolute methanol. Part II. Ligands containing more than one chelating site. J Chem Soc C Org. 1970(9):1309- 13.

Dimitrić Marković JM, Amić D, Lučić B, Marković ZS. Oxidation of kaempferol and its iron(III) complex by DPPH radicals: Spectroscopic and theoretical study. Monatshefte fur Chemie. 2014;145(4):557–63.

Yang X Bin, Wang Q, Huang Y, Fu PH, Zhang JS, Zeng RQ. Synthesis, DNA interaction and antimicrobial activities of copper (II) complexes with Schiff base ligands derived from kaempferol and polyamines. Inorg Chem Commun. 2012; 25:55–9.

Qian LL, Lu Y, Xu Y, Yang ZY, Yang J, Zhou YM, et al. Alkaline earth metal ion coordination increases the radical scavenging efficiency of kaempferol. RSC Adv. 2020;10(50):30035–47.

De Souza LA, Soeiro MM, De Almeida WB. A DFT study of molecular structure and 1H NMR, IR, and UV-Vis spectrum of Zn(II)-kaempferol complexes: A metal-flavonoid complex showing enhanced anticancer activity. Int J Quantum Chem. 2018; 118(23):e25773.