Zoo-mediated CuO Nanoparticles Synthesis Using Sea Urchin Salmacis virgulata (L. Agassiz & Desor, 1846) Test as a Novel Reducing Agent and Evaluated the In silico Antifungal Activity


Published: 2023-11-02

DOI: 10.56557/upjoz/2023/v44i223730

Page: 154-167

Karnan R.

PG and Research Department of Zoology, Rajah Serfoji Government College (Autonomous). [Affiliated To Bharathidasan University], Thanjavur– 613 005, Tamil Nadu, India.

Sukumaran M. *

PG and Research Department of Zoology, Rajah Serfoji Government College (Autonomous). [Affiliated To Bharathidasan University], Thanjavur– 613 005, Tamil Nadu, India.

Mariappan P.

PG and Research Department of Zoology, Rajah Serfoji Government College (Autonomous). [Affiliated To Bharathidasan University], Thanjavur– 613 005, Tamil Nadu, India.

Velavan S.

Harman Institute of Science Education and Research, Thanjavur, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Nanotechnology provides alternatives to conventional pesticides that result in improved efficacy with a specific target, reduced doses, smart delivery, and protection from natural enemies. The present study aims to investigate the eco-friendly source of zoo-material from sea urchin Salmacis virgulata (L. Agassiz & Desor, 1846) test. This is the first-time study on sea urchin test aqueous extract using zoo-mediated CuO nanoparticle synthesis. The present results of the zoochemicals from the aqueous zoo-extract of the sea urchin S. virgulata test contained 60 zoo-compounds were recorded using GC-MS techniques. S. virgulata test zoochemicals are involved in the reduction of copper ions (Cu2+ into Cu0), which forms sea urchin-mediated copper oxide nanoparticles, and initially UV-visible, FTIR spectra confirmed the formation of Z-CuONPs. The computational study confirms the potential antifungal properties of S. virgulata test zoochemicals and CuO using molecular docking tools. The S. virgulata test recorded it as a novel metal ion-reducing agent and also provided valuable bioactive zoo-compounds, and further study is recommended to investigate the In vitro studies on various aspects of synthesized Z-CuONPs.        

Graphical abstract of zoo-mediated CuO nanoparticles synthesis using sea urchin Salmacis virgulata (L. Agassiz & Desor, 1846) test as a novel reducing agent and evaluated the In silico antifungal activity

Keywords: Zoochemicals, zoo-compounds, Sea urchin-mediated nanoparticles, Sea urchin test, Salmacis virgulate, antifungal agent

How to Cite

Karnan R., Sukumaran M., Mariappan P., & Velavan S. (2023). Zoo-mediated CuO Nanoparticles Synthesis Using Sea Urchin Salmacis virgulata (L. Agassiz & Desor, 1846) Test as a Novel Reducing Agent and Evaluated the In silico Antifungal Activity. UTTAR PRADESH JOURNAL OF ZOOLOGY, 44(22), 154–167. https://doi.org/10.56557/upjoz/2023/v44i223730


Download data is not yet available.


Pawson D Leo, Miller John E. Echinoderm. Encyclopedia Britannica. (2023, July 21). Available:https://www.britannica.com/animal/echinoderm.

Neige P. Events of increased biodiversity: evolutionary radiations in the fossil record. Elsevier; 2015.

Raman M, Gopakumar K. Fish collagen and its applications in food and pharmaceutical industry: a review. EC Nutrition. 2018;13:752–767.

Marzorati S, Martinelli G, Sugni M, Verotta L. Green extraction strategies for Sea Urchin waste valorization. Front. Nutr. 2021;13(8).

Shankarlal S, Prabu K, Natarajan E. Antimicrobial and antioxidant activity of purple sea urchin shell (Salmacis virgulata L. Agassiz and Desor 1846). Am Eurasian J Sci Res. 2011;6(3):178-81.

Tee SA, Ilyas YM. The antibacterial inhibition test of gonad sea urchin (Diadema setosum) against the growth of Staphylococcus aureus. In Journal of Physics: Conference Series. IOP Publishing. 2021;1899(1):012053.

Muhammad Y, Nur Fitriani UA, Sri I, Rahmawati S, Mahyati L, Akhmad R. Optimization ultrasonic assisted extraction (UAE) of bioactive compound and antibacterial potential from sea urchin (Diadema setosum). Current Research in Nutrition and Food Science. 2020; 8(2): 556-569.

Zilia F, Orsi L, Costantini M, Tedesco DEA, Sugni M. Case study of Life Cycle Assessment and sustainable business model for sea urchin waste. Cleaner Environmental Systems. 2023;8:100108.

Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine collagen from alternative and sustainable sources: Extraction, processing and applications. Marine drugs. 2020;18(4):214.

Campus P, Swarts ND, Mundy C, Keane JP, Gardner C. Assessing processing waste from the Sea Urchin (Centrostephanus rodgersii) fishery as an organic fertilizer. Agronomy. 2022;12(12): 2919.

Das A, Mandal S, Nag S, Mondal B. Management of Storage Pathogens of Cereal Grains: A Review. International Journal of Economic Plants. 2021;8(2): 103-108.

Sweets L. Stored grain fungi. Agricultural Electronic Bulletin Board University of Missouri Extension-CAFNR. 2018.

Lazcano-Ramírez HG, Garza-García JJ, Hernández-Díaz JA, León-Morales JM, Macías-Sandoval AS, García-Morales S. Antifungal Activity of Selenium Nanoparticles Obtained by Plant-Mediated Synthesis. Antibiotics. 2023;12(1):115.

Karnan R, Sukumaran M, Velavan S. Zoochemical-mediated Nanoparticle Synthesis Using Marine Sponge Hyattella intestinalis (Lamarck, 1814) as a Reducing Agents. Uttar Pradesh Journal of Zoology. 2023b;44(18):35–41.

Karnan R, Velavan S, Mariappan P, Sukumaran M. Evaluation of Insecticidal Activity of Zoochemical-Assisted Zinc Oxide Nanoparticle Using Marine Invertebrate Hyattella intestinalis (Lamarck, 1814). Uttar Pradesh journal of Zoology. 2023c;44(21):31–39.

Hasaballah AI, El-Naggar HA, Abdelbary S, Bashar MA, Selim TA. Eco-friendly synthesis of zinc oxide nanoparticles by marine sponge, Spongia officinalis: antimicrobial and insecticidal activities against the mosquito vectors, Culex pipiens and Anopheles pharoensis. BioNanoScience. 2022;1-16.

George IE, Cherian T, Ragavendran C, Mohanraju R, Dailah HG, Hassani R, Mohan S. One-pot green synthesis of silver nanoparticles using brittle star Ophiocoma scolopendrina: Assessing biological potentialities of antibacterial, antioxidant, anti-diabetic and catalytic degradation of organic dyes. Heliyon. 2023;9(3).

Venkatraman C, Padmanaban P. On a collection of shallow-water echinoderms of Gulf of Mannar Biosphere Reserve, southern India. Records of Zoological Survey of India. 2013;113(1): 95-114.

Satheeshkumar P. First record of regular sea urchin Salmacis virgulata (L. Agassiz and Desor 1846) from the Pondicherry Coast, India. World journal of fish and marine sciences. 2011;3(2):126-128.

Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: An overview. Indian J Med Res. 2013;125:451-472.

Dr. Dukes. Phytochemical and Ethnobotanical Databases. Phytochemical and Ethnobotanical Databases. www.ars-gov/cgi-bin/duke/. 2013.

Ghidan AY, Al-Antary TM, Awwad AM. Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid. Environmental Nanotechnology, Monitoring & Management. 2016;6:95-98.

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010;31(2):455-461.

Velavan S, Karnan R, Kanivalan N. A comparative study on In silico software’s in statistical relation to molecular docking scores. Asian Journal of Innovative Research. 2020;5(2):01-05.

Abd Rahim ENA, Ismail A, Omar MN, Rahmat UN, Ahmad WANW. GC-MS analysis of phytochemical compounds in Syzygium polyanthum leaves extracted using ultrasound-assisted method. Pharmacognosy Journal. 2018;10(1).

Karnan R, Sukumaran M, Velavan S. Extraction and identification of zoochemicals in marine sponge Hyattella intestinalis (Lamarck, 1814) (Phylum: Porifera) using GC-MS technique. Intern. J. Zool. Invest. 2022;8 (Special Issue): 113-118.

Lindshield B. Kansas State University Human Nutrition (FNDH 400) Flexbook. New Prairie Press, Kansas State University Libraries. 2018.

Karnan R, Sukumaran M, Mariappan P, Velavan S. Insecticidal Effect of Zoochemicals Mediated Copper Oxide Nanoparticle Using Marine Sponge Hyattella intestinalis (Lamarck, 1814) and Molecular Docking. Uttar Pradesh Journal of Zoology. 2023a;44(15): 64–72.

Nzilu DM, Madivoli ES, Makhanu DS, Wanakai SI, Kiprono GK, Kareru PG. Green synthesis of copper oxide nanoparticles and its efficiency in degradation of rifampicin antibiotic. Scientific Reports. 2023;13(1):14030.

Alhalili Z. Green synthesis of copper oxide nanoparticles CuONPs from Eucalyptus Globoulus leaf extract: Adsorption and design of experiments. Arabian Journal of Chemistry. 2022;15(5):103739.

Qamar H, Rehman S, Chauhan DK, Tiwari AK, Upmanyu V. Green synthesis, characterization and antimicrobial activity of copper oxide nanomaterial derived from Momordica charantia. International journal of nanomedicine. 2020;2541-2553.

Giannetto A, Cappello T, Oliva S, Parrino V, De Marco G, Fasulo S, Maisano M. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos. Aquatic Toxicology. 2018; 201: 187-197.

Torres-Duarte C, Adeleye AS, Pokhrel S, Mädler L, Keller AA, Cherr GN. Developmental effects of two different copper oxide nanomaterials in sea urchin (Lytechinus pictus) embryos. Nanotoxicology. 2016; 10(6): 671-679.

Hamed MR, Moradi MHGAM. Biosynthesis of Silver Nanoparticles Using Marine Sponge. Oriental Journal of Chemistry. 2015;31(4):1961.

Inbakandan D, Sivaleela G, Peter DM, Kiurbagaran R, Venkatesan R, Khan SA. Marine sponge extract assisted biosynthesis of silver nanoparticles. Materials Letters. 2012;87:66-68.

Inbakandan D, Venkatesan R, Khan SA. Biosynthesis of gold nanoparticles utilizing marine sponge Acanthella elongata (Dendy, 1905). Colloids and Surfaces B: Biointerfaces. 2010;81(2):634-639.

Rabelo VW, Santos TF, Terra L, Santana MV, Castro HC, Rodrigues CR, Abreu PA. Targeting CYP 51 for drug design by the contributions of molecular modeling. Fundamental & Clinical Pharmacology. 2017;31(1):37-53.

Apeh VO, Njoku OU, Nwodo FOC, Chukwuma IF, Emmanuel AA. In silico drug-like properties prediction and in vivo antifungal potentials of Citrullus lanatus seed oil against Candida albicans. Arabian Journal of Chemistry. 2022;15(2):103578.

Mailafiya MM, Yusuf AJ, Abdullahi MI, Aleku GA, Ibrahim IA, Yahaya M, Alebiosu CO. Antimicrobial activity of stigmasterol from the stem bark of Neocarya macrophylla. Journal of Medicinal Plants for Economic Development. 2018;2(1):1-5.

Ads EN, Hassan SI, Rajendrasozhan S, Hetta MH, Aly SH, Ali MA. Isolation, structure elucidation and antimicrobial evaluation of natural pentacyclic triterpenoids and phytochemical investigation of different fractions of Ziziphus spina-christi (L.) Stem Bark Using LCHRMS analysis. Molecules. 2022;27(6):1805.

Salehi F, Emami L, Rezaei Z, Khabnadideh S, Tajik B, Sabet R. Fluconazole-like compounds as potential antifungal agents: QSAR, molecular docking, and molecular dynamics simulation. Journal of Chemistry. 2022:1-16.