Green Synthesis of Silver Nanoparticle Using Aqueous Leaf Extract of Barleria noctiflora and its Bioactive Efficacy
UTTAR PRADESH JOURNAL OF ZOOLOGY, Volume 44, Issue 23,
Page 37-45
DOI:
10.56557/upjoz/2023/v44i233761
Abstract
For millennia, silver has been known to have powerful antibacterial effects. Topical silver dressings are now commonly used to treat infections in burns, open wounds, and persistent ulcers. Because pathogenic organisms evolve on a daily basis as a result of mutation and antibiotic resistance, the manufacture and investigation of nanoparticles for use in antibacterial garments, burn ointments, and medical device coatings is an important industrial topic of nanoscience. This is the first study on the synthesis of silver nanoparticles from leaf extract of the medicinal plant Barleria noctiflora. Through the use of FT-IR, UV-visible spectrum analysis, XRD analysis, SEM EDAX, and antimicrobial potential, the bioreduced nanoparticles were discovered and verified. The greatest absorption peak in the UV-visible spectrum examination was seen at 480 nm for the silver nanoparticles. Twelve distinct peaks were identified in the FTIR spectra of biogenic AgNPs, located at 3127.21, 1624.74, 1400.35, 1155.96, 1021.11, 906.70, 825.31, 718.73, 669.69, 538.93, 457.21, and 417.49 cm-1. Peaks at 2θ values of 10.545, 19.000, 21.137, 22.033, 23.370, 26.691, 31.507, and 33.747, corresponding heights of 23.40, 235.26, 750.78, 357.58, 335.93, 171.19, 186.87, and 115.38cts, respectively, indicated by XRD analysis that the silver particles generated in our experiments were nanocrystals. The silver nanoparticles were tested with "d" spacing values of 8.38940, 4.67087, 4.20328, 4.03422, 3.80651, 3.33986, 2.83949, and 2.65601. SEM spectral analysis revealed oval AgNPs with a size range of 20 m. Metallic nanoparticles generated from Barleria noctiflora were tested for antibacterial activity against gram-positive and gram-negative pathogens such as E. Coli, Staphylococcus aureus, and the fungi Aspergillus niger and Candida albicans using the disc diffusion method. Surprisingly, metallic Ag nanoparticles had strong inhibitory zones against the selected illnesses.
- Barleria noctiflora
- green synthesis
- AgNPs, microorganisms
- characterization
How to Cite
References
Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016;9(3):217–227.
Rahman AU, Khan AU, Yuan Q. Tuber extract of Arisaema flavum eco-benignly and effectively synthesizes silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. J Photochem Photobiol B. 2019;193:31–38.
Yang B, Yang Z, Wang R. Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries. J. Mater. Chem A. 2014;2(3):785–791.
Bastus NG, Merkoci F, Piella J. Synthesis of highly Mono dis-perse citrate-stabilized silver nanoparticles of up to 200 nm: kin-etic control and catalytic properties. Chem Mater. 2014, 26(9):2836–2846.
Boca SC, Potara M, Gabudean AM. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311(2):131–140.
Stadler L, Homafar M, Hartl A. Najafishirtari S. Zbo R. Petr M. Gawande M. B. Zhi J. and Reiser O. ACS Sustainable Chem. Eng. 2019;7:2388—2399.
Mohanraj VJ, Chen Y, Trop J. Pharm Res. 2007;5:561—573. (4,5)
Chatterjee S. Dhanurdhar and Rokhum L. Renewable Sustainable Energy Rev. 2017;72:560 -564.
Bagheri S, Julkapli NMJ. Magn. Mate. 2016;416:117—133.
Ingle AP, Biswas A, Vanlalveni C, Lalfakzuala R Gupta I , Ingle P, Rokhum L and Rai M., Microb. Bionanotechnol., 2020;135—161.
Xu C, Akakuru OU, Zheng J. and Wu A. Front. Bioeng. Biotechnol. 2019;7:141.
Bagheri S. Yasemi M, Safaie-Qamsari E. Rashidiani J. Abkar M, Hassani M. Mirhosseini SA. and Kooshki H. Artif. Cells, Nanomed., Biotechnol.2018;46:462-471.
Muthuraman A, Rishitha N and Mehdi S. Design of Nanostructures for Theranostics Applications ,2018;529–562.
Tortorella S, Karagiannis TC. Molecular mechanisms and physiology of disease: Implications for Epigenetics and Health; 2014.
Ahmed S, Ahmad M, Swami BL, Ikram SJ. Adv. Res. 2016;7:17—28.
Vijayan SR, Santhiyagu P, Ramasamy R, Arivalagan P, Kumar G, Ethiraj K. and. Ramaswamy BR, Enzyme Microb. Technol. 2016;95:45 —57.
Ahmed S, Annu S. Ikram and Yudha SJ. Photochem. Photobiol. B. 2016;161;141—153.
Mohanpuria P, Rana NK, Yadav SKJ. Nanopart. Res.2008;10:507—517.
Pathak G, Rajkumari K,Rokhum L. Nanoscale Adv. 2019;1:1013—1020.
Saiqa Ikram SAJ. Nanomed. Nanotechnol. 2015;6:1000309.
Ahmed S, Ikram S. Nano Res. Appl. 2015;1:1 —6 .
Rajkumari K, Das D, Pathak G,Rokhum L. New J. Chem. 2019;43:2134—2140.
Changmai B, Laskar IB Rokhum L. J. Taiwan Inst. Chem. Eng., 2019, 102, 276 —282 .
Changmai B. Sudarsanam P. and Rokhum L. Ind. Crops Prod., 2020, 145, 111911 .
Nath B, Das B, Kalita P and Basumatary S. J. Cleaner Prod., 2019, 239, 118-112 .
Nour S, Baheiraei N. Imani R, Khodaei M, Alizadeh A, Rabiee N. and Moazzeni S. M. J. Mater. Sci.: Mater. Med. 2019;30:120.
Bondarenko O, Juganson K. Ivask A, Kasemets K. Mortimer M. and Kahru A. Arch. Toxicol., 2013, 87 , 1181 —1200.
Pal A, Shah S, Devi S. Mater. Chem. Phys. 2009;114:530 —532 .
Wu T, Shen H, Sun L, Cheng B, Liu B, Shen J. ACS Appl. Mater. Interfaces. 2012; 4:2041—2047.
Zhang X, Sun H, Tan S, Gao J, Fu Y, Liu Z. Inorg. Chem. Commun. 2019;100:44 -50.
Remya V R, Abitha VK, Rajput PS, Rane AV, Dutta A. Chem. Int. 2019;3:165 —171.
Rafique M, Sadaf I, Rafique MS, Tahir MB. Artif. Cells, Nanomed., Biotechnol. 2017; 45:1272—1291.
Gamble. Flora of Presidency of Madras; 1928.
Mathew KM. The Flora of the Tamil Nadu Carnatic.1981;2:1459-1460.
Muthukumaran P, Saraswathy N, Kogilavani R, Udhaya Bhaskar S, Sindhu S. Preliminary Phytochemical Screening and Antimicrobial Properties of Pleurotus lorida and Pleurotus eous against some human pathogens: A Comparative Study. Muthukumaran P et al. Int. Res. J. Pharm. 2014;5(2).
Prasad TNVK, Elumalai EK. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine. 2011;1(6):439–442.
Viamajala S, Peyton BM, Apel WA, et al. Chromate reduction in Shewanella oneidensis MR-1 is an inducible process associated with anaerobic growth. Biotechnol Prog. 2002;18(33):290– 295.
Kalaimurugan D, Vivekanandhan P, Sivasankar P. Larvicidal activity of silver nanoparticles synthesized by Pseudomonas fluorescens YPS3 isolated from the Eastern Ghats of India. J Clust Sci.2019;30:225–233.
Sekar V, Balakrishnan C, Kathirvel V, Swamiappan S, Alshehri M, Sayed S, Panneerselvam C. Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleriabuxifolia leaf extract and their possible application. Artificial Cells, Nanomedicine, and Biotechnology. 2022;50(1):177–187.
Savithramma N, Linga M, Rao, Suvarnalatha Devi P. Evaluation of antibacterial efficacy of biologically synthesized silver Nanoparticles using stem barks of Boswellia ovalifoliolata Bal. and Henry and Shorea tumbuggaiaRoxb. Journal of Biological Sciences. 2011; 11(1): 39–45.
Kumar P, Selvi SS, Prabha AL, Kumar KP, Ganeshkumar RS, Govindaraju M. Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its antibacterial activity. Nano Biomedicine and Engineering. 2012; 4(1):12–16.
-
Abstract View: 78 times
PDF Download: 6 times