A Review on Antibiotic Resistance in Bacterial Pathogens

Kiran Kumar Mandapati

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, India.

Uma Chinnaiyan

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, India.

Sowndarya Sivaprakasam

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, India.

Sivagurunathan Paramasivam *

Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, India.

*Author to whom correspondence should be addressed.


Abstract

Human health has been greatly impacted by the use of antibiotics, which have become essential in modern medicine. The treatment of bacterial infections with antibiotics decreased childhood mortality and raised life expectancy. Global public health is seriously threatened by antibiotic resistance. The multi-drug resistance (MDR) pandemic has spread quickly throughout many nations, with some instances going untreated. This has led to greater mortality rates, longer hospital stays, increased medical expenditures, and more. The primary culprits behind nosocomial infections are thought to be a variety of multidrug-resistant (MDR) such as A. baumannii, Pseudomonas aeruginosa, Enterobacteria that produces extended-spectrum beta-lactamase (ESBL), and carbapenem-resistant CRE. The most prevalent bacterial pathogens have been identified as Methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), according to recent reports. The primary factors in the development of antibiotic resistance are the subject of this review.

Keywords: Multidrug resistance, antibiotic resistance, nosocomial infection, bacteria, genes


How to Cite

Mandapati , K. K., Chinnaiyan, U., Sivaprakasam , S., & Paramasivam , S. (2024). A Review on Antibiotic Resistance in Bacterial Pathogens. UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(2), 5–15. https://doi.org/10.56557/upjoz/2024/v45i23859

Downloads

Download data is not yet available.

References

Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: Mortality, length of hospital stay, and health care costs. Clinical Infectious Diseases, (Supplement_2). 2006;42:S82-S89.

Quintela-Baluja M, Abouelnaga M, Romalde J, Su JQ, Yu Y, Gomez-Lopez M, Graham DW. Spatial ecology of a wastewater network defines the antibiotic resistance genes in downstream receiving waters. Water Research. 2019;162:347-357.

Marti E, Variatza E, Balcázar JL. Bacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environment. Clinical Microbiology and Infection. 2014; 20(7):O456-O459.

Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio. 2014;5(5):10-1128.

Zhang XX, Zhang T, Fang HH. Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology. 2009;82:397-414.

Jin M, Liu L, Wang DN, Yang D, Liu WL, Yin J, Li JW. Chlorine disinfection promotes the exchange of antibiotic resistance genes across bacterial genera by natural transformation. The ISME journal. 2020;14(7):1847-1856.

Wang J, Chu L, Wojnárovits L, Takács E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGS) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of the Total Environment. 2020;744:140997.

Tenover FC. Mechanisms of antimicrobial resistance in bacteria. The American journal of Medicine. 2006;119(6):S3-S10.

Fernandez-Lopez R, De Toro M, Moncalian G, Garcillan-Barcia MP, De la Cruz F. Comparative genomics of the conjugation region of F-like plasmids: Five Shades of F. Frontiers in Molecular Biosciences. 2016;3:71.

Ashbolt NJ, Amézquita A, Backhaus T, Borriello P, Brandt KK, Collignon P, Topp E. Human health risk assessment (HHRA) for environmental development and transfer of antibiotic resistance. Environmental Health Perspectives. 2013; 121(9):993-1001.

Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews. 2010;74(3): 417-433.

Martínez JL. Antibiotics and antibiotic resistance genes in natural environments. Science. 2008;321(5887):365-367.

Nikaido H. Multidrug resistance in bacteria. Annual Review of Biochemistry. 2009;78: 119-146.

Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microbial Drug Resistance. 2019;25(6):890-908.

Sweeney MT, Lubbers BV, Schwarz S, Watts JL. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. Journal of Antimicrobial Chemotherapy. 2018;73(6):1460-1463.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Shen J. emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: A microbiological and molecular biological study. The Lancet Infectious Diseases. 2016;16(2):161-168.

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Woyke T. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499(7459):431-437.

Schulz F, Eloe-Fadrosh EA, Bowers RM, Jarett J, Nielsen T, Ivanova NN, Woyke T. Towards a balanced view of the bacterial tree of life. Microbiome. 2017;5:1-6.

Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012; 337(6098):1107-1111.

Dantas G, Sommer MO, Oluwasegun RD, Church GM. Bacteria subsisting on antibiotics. Science. 2008;320(5872):100-103.

Czekalski N, Sigdel R, Birtel J, Matthews B, Bürgmann H. Does human activity impact the natural antibiotic resistance background? Abundance of antibiotic resistance genes in 21 Swiss lakes. Environment International. 2015;81:45-55.

Zong Z, Zhang X. bla NDM-1-carrying Acinetobacter johnsonii detected in hospital sewage. Journal of Antimicrobial Chemotherapy. 2013;68(5):1007-1010.

Serwecińska L, Kiedrzyńska E, Kiedrzyński M. A catchment-scale assessment of the sanitary condition of treated wastewater and river water based on fecal indicators and carbapenem-resistant acinetobacter spp. Science of the Total Environment. 2021;750:142266.

Tacconelli ECMA, Cataldo MA, Dancer SJ, De Angelis G, Falcone M, Frank U, Cookson B. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug‐resistant Gram‐negative bacteria in hospitalized patients. Clinical Microbiology and Infection. 2014;20:1-55.

Teerawattanapong N, Kengkla K, Dilokthornsakul P, Saokaew S, Apisarnthanarak A, Chaiyakunapruk N. Prevention and control of multidrug-resistant gram-negative bacteria in adult intensive care units: a systematic review and network meta-analysis. Clinical Infectious Diseases. 2017;64(suppl_2): S51-S60.

Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy. 2010;54(3):969-976.

Miyagi K, Hirai I. A survey of extended-spectrum β-lactamase-producing enterobacteriaceae in environmental water in okinawa prefecture of Japan and relationship with indicator organisms. Environmental Science and Pollution Research. 2019;26:7697-7710.

Joshi SG, Litake GM. Acinetobacter baumannii: An emerging pathogenic threat to public health. World Journal of Clinical Infectious Diseases. 2013;3(3):25-36.

Safaei HG, Moghim S, Isfahani BN, Fazeli H, Poursina F, Yadegari S, Nodoushan SAH. Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant pseudomonas aeruginosa isolates from burn patients. Advanced Biomedical Research. 2017;6.

Arora S, Gautam V, Rana S, Ray P. Novel chromogenic medium for detection of extended-spectrum beta-lactamase-producing Enterobacteriaceae, methicillin resistant Staphylococcus aureus and vancomycin resistant Enterococcus. Journal of Medical Investigations and Practice. 2014;9(2):98.

Available:https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Reygaert WC. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS microbiology. 2018;4(3): 482.

Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens. 2021; 10(10):1310.

De Oliveira DM, Forde BM, Kidd TJ, Harris PN, Schembri MA, Beatson SA, Walker MJ. Antimicrobial resistance in ESKAPE pathogens. Clinical microbiology reviews. 2020;33(3):10-1128.

Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews Microbiology. 2018;16(2):91-102.

Vrancianu CO, Gheorghe I, Czobor IB, Chifiriuc MC. Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms. 2020;8(6): 935.

F Mojica M, A Bonomo R, Fast W. B1-metallo-β-lactamases: where do we stand? Current drug Targets. 2016;17(9):1029-1050.

Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi journal of biological sciences. 2015;22(1): 90-101.

Hammoudi Halat D, Ayoub Moubareck C. The current burden of carbapenemases: Review of significant properties and dissemination among gram-negative bacteria. Antibiotics. 2020;9(4):186.

Beceiro A, Dominguez L, Ribera A, Vila J, Molina F, Villanueva R, Bou G. Molecular characterization of the gene encoding a new AmpC β-lactamase in a clinical strain of Acinetobacter genomic species 3. Antimicrobial agents and chemotherapy. 2004;48(4):1374-1378.

Abdi SN, Ghotaslou R, Ganbarov K, Mobed A, Tanomand A, Yousefi M, Kafil HS. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infection and Drug Resistance. 2020;423-434.

Basatian-Tashkan B, Niakan M, Khaledi M, Afkhami H, Sameni F, Bakhti S, Mirnejad R. Antibiotic resistance assessment of Acinetobacter baumannii isolates from Tehran hospitals due to the presence of efflux pumps encoding genes (adeA and adeS genes) by molecular method. BMC Research Notes. 2020;13:1-6.

Chen L, Tan P, Zeng J, Yu X, Cai Y, Liao K, Huang B. Impact of an intervention to control imipenem-resistant Acinetobacter baumannii and its resistance mechanisms: An 8-year survey. Frontiers in Microbiology. 2021;11:610109.

Karaiskos I, Lagou S, Pontikis K, Rapti V, Poulakou G. The “old” and the “new” antibiotics for MDR gram-negative pathogens: For whom, when, and how. Frontiers in public health. 2019;7:151.

Vázquez-López R, Solano-Gálvez SG, Juárez Vignon-Whaley JJ, Abello Vaamonde JA, Padró Alonzo LA, Rivera Reséndiz A, Barrientos Fortes T. Acinetobacter baumannii resistance: A real Challenge for Clinicians. Antibiotics. 2020; 9(4):205.

Górski A. Jo nczyk-Matysiak, E. The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy. Antibiotics. 2021;10:281.

Nepka M, Perivolioti E, Kraniotaki E, Politi L, Tsakris A, Pournaras S. In vitro bactericidal activity of trimethoprim-sulfamethoxazole alone and in combination with colistin against carbapenem-resistant Acinetobacter baumannii clinical isolates. Antimicrobial Agents and Chemotherapy. 2016;60(11): 6903-6906.

Simpson S. Methicillin resistant Staphylococcus aureus and its implications for nursing practice: A literature review. Nursing Practice (Edinburgh, Scotland). 1992;5(2):2-7.

Mulligan ME, Murray-Leisure KA, Ribner BS, Standiford HC, John JF, Korvick JA, Victor LY. Methicillin-resistant Staphylococcus aureus: A consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. The American journal of medicine. 1993;94(3): 313-328.

Cuevas O, Cercenado E, Vindel A, Guinea J, Sánchez-Conde M, Sánchez-Somolinos M, Bouza E. Evolution of the antimicrobial resistance of Staphylococcus spp. in Spain: five nationwide prevalence studies, 1986 to 2002. Antimicrobial agents and chemotherapy. 2004;48(11):4240-4245.

Kourtis AP, Hatfield K, Baggs J, Mu Y, See I, Epson E, Cardo D. Vital signs: epidemiology and recent trends in methicillin-resistant and in methicillin-susceptible Staphylococcus aureus bloodstream infections—United States. Morbidity and Mortality Weekly Report. 2019;68(9):214.

Skinner S, Murray M, Walus T, Karlowsky JA. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. Journal of Clinical Microbiology. 2009; 47(3):859-861.

Pada SK, Ding Y, Ling ML, Hsu LY, Earnest A, Lee TE, Fisher D. Economic and clinical impact of nosocomial meticillin-resistant Staphylococcus aureus infections in Singapore: A matched case–control study. Journal of Hospital Infection. 2011; 78(1):36-40.

Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: A meta-analysis. Clinical infectious diseases. 2003;36(1):53-59.

Kaasch AJ, Barlow G, Edgeworth JD, Fowler Jr VG, Hellmich M, Hopkins S, Sabg U. Staphylococcus aureus bloodstream infection: A pooled analysis of five prospective, observational studies. Journal of Infection. 2014;68(3):242-251.

Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. International Journal of Molecular Sciences. 2021; 22(6):3128.

Recio R, Mancheño M, Viedma E, Villa J, Orellana MÁ, Lora-Tamayo J, Chaves F. Predictors of mortality in bloodstream infections caused by Pseudomonas aeruginosa and impact of antimicrobial resistance and bacterial virulence. Antimicrobial Agents and Chemotherapy. 2020;64(2):10-1128.

Hwang W, Yoon SS. Virulence characteristics and an action mode of antibiotic resistance in multidrug-resistant Pseudomonas aeruginosa. Scientific reports. 2019;9(1):487.

Henrichfreise B, Wiegand I, Pfister W, Wiedemann B. Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation. Antimicrobial Agents and Chemotherapy. 2007;51(11):4062-4070.

Sader HS, Huband MD, Castanheira M, Flamm RK. Pseudomonas aeruginosa antimicrobial susceptibility results from four years (2012 to 2015) of the international network for optimal resistance monitoring program in the United States. Antimicrobial agents and chemotherapy. 2017;61(3):10-1128.

Dehbashi S, Tahmasebi H, Alikhani MY, Keramat F, Arabestani MR. Distribution of Class B and Class A β-lactamases in clinical strains of Pseudomonas aeruginosa: Comparison of phenotypic methods and high-resolution melting analysis (HRMA) assay. Infection and Drug Resistance. 2020;2037-2052.

Ahmed S, Sony SA, Chowdhury M., Ullah MM, Paul S, Hossain T. Retention of antibiotic activity against resistant bacteria harbouring aminoglycoside-N-acetyltransferase enzyme by adjuvants: a combination of in-silico and in-vitro study. Scientific Reports. 2020;10(1):19381.

Ontong JC, Ozioma NF, Voravuthikunchai SP, Chusri S. Synergistic antibacterial effects of colistin in combination with amin-oglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant Klebsiella pneumoniae isolates. Plos one. 2021;16(1):e0244673.

Pungcharoenkijkul S, Traipattanakul J, Thunyaharn S, Santimaleeworagun W. Antimicrobials as single and combination therapy for colistin-resistant Pseudomonas aeruginosa at a university hospital in Thailand. Antibiotics. 2020;9(8):475.

Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International; 2016.

Caneiras C, Lito L, Melo-Cristino J, Duarte A. Community-and hospital-acquired Klebsiella pneumoniae urinary tract infections in Portugal: Virulence and antibiotic resistance. Microorganisms. 2019;7(5):138.

Eghbalpoor F, Habibi M, Azizi O, Asadi Karam MR, Bouzari S. Antibiotic resistance, virulence and genetic diversity of Klebsiella pneumoniae in community-and hospital-acquired urinary tract infections in Iran. Acta Microbiologica et Immunologica Hungarica. 2019;66(3):349-366.

Young TM, Bray AS, Nagpal RK, Caudell DL, Yadav H, Zafar MA. Animal model to study Klebsiella pneumoniae gastrointestinal colonization and host-to-host transmission. Infection and immunity. 2020;88(11):10-1128.

Effah CY, Sun T, Liu S, Wu Y, Klebsiella pneumoniae: an increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials. 2020;19(1):1-9.

Lasko MJ, Nicolau DP. Carbapenem-resistant Enterobacterales: Considerations for treatment in the era of new antimicrobials and evolving enzymology. Current Infectious Disease Reports. 2020;22:1-12.

Gualtero S, Valderrama S, Valencia M, Rueda D, Muñoz-Velandia O, Ariza B, Niño A. Factors associated with mortality in Infections caused by Carbapenem-resistant Enterobacteriaceae. The Journal of Infection in Developing Countries. 2020; 14(06):654-659.

Sheu CC, Chang YT, Lin SY, Chen YH, Hsueh PR. Infections caused by carbapenem-resistant Enterobacte-riaceae: an update on therapeutic options. Frontiers in Microbiology. 2019;10:80.

Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Monnet DL. G. Burden of AMR Collaborative, Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect. Dis. 2019;19(1): 56-66.

Australian Commission on Safety and Quality in Health Care. AURA 2019. Third Australian report on antimicrobial use and resistancein human health; 2019. Available:https://www.safetyandquality.gov.au/sites/default/files/2019-06/AURA-2019-Report.pdf. Accessed 10 November 2019.

Schembri MA, Ben Zakour NL, Phan MD, Forde BM, Stanton-Cook M, Beatson SA. Molecular characterization of the multidrug resistant Escherichia coli ST131 clone. Pathogens. 2015;4(3):422-430.

European Antimicrobial Resistance Surveillance Network. 2019. Surveil-lance of antimicrobial resistance in Europe. Annual report of the Euro-pean Antimicrobial Resistance Surveillance Network (EARS-Net); 2018.

Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, Kohlenberg A. European antimicrobial resistance genes surveillance network eurgen-net capacity survey group. Worsening epidemiological situation of carbapenemase-producing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019;24(9): 1900123.

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases. 2016;16(2): 161-168.

Crettels L, Burlion N, Breyer R, Mainil J, Servais P, Korfer J, Thiry D. Antimicrobial resistance of Escherichia coli isolated from freshwaters and hospital effluents in Belgium. Letters in applied Microbiology. 2022;74(3):411-418.

Galvin S, Boyle F, Hickey P, Vellinga A, Morris D, Cormican M. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources. Applied and Environmental Microbiology. 2010;76(14): 4772-4779.

Komiażyk M, Palczewska M, Pikula S, Groves P. Bacterial type AB₅ enterotoxins--structure, function and mechanism of action. Postepy biochemii. 2015;61(4): 430-435.

Childers BM, Klose KE. Regulation of virulence in Vibrio cholerae: the ToxR regulon; 2007.

Weber GG, Klose KE. The complexity of ToxT-dependent transcription in Vibrio cholerae. The Indian Journal of Medical Research. 2011;133(2):201.

Hung DT, Shakhnovich EA, Pierson E, Mekalanos JJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science. 2005;310(5748): 670-674.

Anthouard R, DiRita VJ. Small- molecule inhibitors of toxT expression in Vibrio cholerae. MBio. 2013;4(4):10-1128.