Exploring Neophytadiene from Ampelocissus araneosa: A Molecular Docking Approach to Inhibit Biofilm Formation in Staphylococcus aureus

Balasubramanian Uma Maheswari *

Department of Botany, Sri Sarada College for Women (Autonomous), Salem, 636016, Tamil Nadu, India.

Govindan Kalaiselvi

Department of Botany, Sri Sarada College for Women (Autonomous), Salem, 636016, Tamil Nadu, India.

*Author to whom correspondence should be addressed.


Background: The urgent need to combat antimicrobial resistance and biofilm production has prompted the exploration of alternative remedies, such as plant extracts, as viable substitutes for antibiotics.

Aim: This study aims to assess the phytocompound from A. araneosa and elucidate its inhibitory mechanisms against biofilm formation by S. aureus through molecular docking techniques.

Methodology: Plant material collection and extract preparation were conducted, followed by GCMS analysis of A. araneosa and protein modeling of Biofilm_IcaR from S. aureus. Drug 3D prediction and drug docking studies were performed using Neophytadiene and Metronidazole, with the Patch Dock server for the exploration of molecular interactions between the compounds and protein targets.

Results and Implications: The study identified bioactive compounds from A. araneosa, including neophytadiene, 3-eicosyne, phytol, and stigmasterol, known for their robust antimicrobial properties. Molecular docking studies demonstrated that neophytadiene exhibited a higher binding affinity to the Biofilm_IcaR protein compared to the control drug, Metronidazole, suggesting its efficacy as an inhibitor. These findings provide molecular insights into the potential of neophytadiene as a therapeutic agent against biofilm-producing S. aureus, with implications for the development of novel antimicrobial treatments.

Keywords: Biofilm production, A. araneosa, neophytadiene, molecular docking, stigmasterol

How to Cite

Maheswari , B. U., & Kalaiselvi , G. (2024). Exploring Neophytadiene from Ampelocissus araneosa: A Molecular Docking Approach to Inhibit Biofilm Formation in Staphylococcus aureus . UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(3), 59–70. https://doi.org/10.56557/upjoz/2024/v45i33875


Download data is not yet available.


Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev. 2020;84(3):e00026-19. DOI: 10.1128/MMBR.00026-19 PMID 32792334

Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 2018;25(2):361-6. DOI: 10.1016/j.sjbs.2017.02.004 PMID 29472791

Atef NM, Shanab SM, Negm SI, Abbas YA. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptibleand resistant bacterial strains causing wound infection. Bull Natl Res Cent. 2019;43(1):144. DOI: 10.1186/s42269-019-0184-9

Mambe FT, Na-Iya J, Fotso GW, Ashu F, Ngameni B, Bonaventure T. Ngadjui, Veronique P. Beng, and Victor Kuete. Antibacterial and Antibiotic Modifying Potential of Crude Extracts, Fractions, and Compounds from Acacia polyacantha willd against MDR Gram-Negative Bacteria. Evidence-Based Complementary and Alternative Medicine. 2019;1-13 Article ID 7507549

Chaudhuri A, Ray S. Cytotoxic and antiproliferative activities of aqueous extract from aerial parts of Ampelocissus latifolia (Roxb.) Planch. on Dalton’s lymphoma cells. J King Saud Univ Sci. 2020;32(3):1978-85. DOI: 10.1016/j.jksus.2020.01.046

Pinzi L, Rastelli G. Molecular docking: shifting paradigms in drug discovery. Int J Mol Sci. 2019;20(18):20(18):4331. DOI: 10.3390/ijms20184331 PMID 31487867

Challapa-Mamani MR. Tomás-Alvarado, E, Espinoza-Baigorria A, León-Figueroa, DA, Sah R, Rodriguez-Morales AJ. Barboza, J.J. Molecular Docking and Molecular Dynamics Simulations in Related to Leishmania donovani: An Update and Literature Review. Trop. Med. Infect. Dis. 2023;8:457. Available:https://doi.org/10.3390/tropicalmed8100457'.

Prabakaran, Jegadeeshkumar. Exploring the potent antibacterial attributes of Nymphaea alba and Nymphaea rubra: novel strategies against multidrug-resistant pathogens. Indian J Appl Res. 2023; 13(09):1-3.

Aji R, Raja JSR. GCMS analysis of tannery effluent by using halophilic Bacterial Strain Pseudomonas aeruginosa sthc002 and keratinase Enzyme. Annals RSCB. 2021; 25(6):1448-67.

Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020; 10(1):16438. DOI: 10.1038/s41598-020-73442-0 PMID 33009462

Ralte L, Khiangte L, Thangjam NM, Kumar A, Singh YT. GC–MS and molecular docking analyses of phytochemicals from the underutilized plant, Parkia timoriana revealed candidate anti-cancerous and anti-inflammatory agents. Sci Rep. 2022; 12(1):3395. DOI: 10.1038/s41598-022-07320-2 PMID 35233058

Pratama OA, Tunjung Woro AS, Sutikno Budi SD. Bioactive compound profile of melon leaf extract (Cucumis melo L. ”Hikapel”) infected by downy mildew. Bio Divers. 2019;20(11):3448-53.

Maqsood Ahmed K-ur-Rehman Khan, Saeed Ahmad, Hanan Y. Aati, Asma E. Sherif, Mada F. Ashkan, Jehan Alrahimi, Ebtihal Abdullah Motwali, Muhammad Imran Tousif, Mohsin Abbas Khan, Musaddique Hussain, Mhammad Umair, Bilal Ahmad Ghalloo, Sameh A. Korma. Phytochemical, antioxidant, enzyme inhibitory, thrombolytic, antibacterial, antiviral and in silico studies of Acacia jacquemontii leaves. Arabian Journal of Chemistry. 2022;15(12):104345.

Islam MT, Rahman MA, Saeed M, Ul-Haq Z, Alam MJ, Mondal M et al. Anti-diarrheal activities of phytol along with its possible mechanism of action through in-vivo and in-silico models. Cell Mol Biol (Noisy-Le-Grand). 2020;66(4):243- 9. DOI: 10.14715/cmb/2020.66.4.29 PMID 32583783

Alawode TT, Lajide L, Olaleye M, Owolabi B. Stigmasterol and β-sitosterol: antimicrobial compounds in the Leaves of Icacina Trichantha identified by GC–MS. Beni Suef Univ J Basic Appl Sci. 2021; 10(1):80. DOI: 10.1186/s43088-021-00170-3

Bakrim S, Benkhaira N, Bourais I, Benali T, Lee L-H, El Omari N et al. Health benefits and pharmacological properties of stigmasterol. Antioxidants (Basel). 2022; 11(10):1912. DOI: 10.3390/antiox11101912 PMID 36290632

Sultan MT, Anwar MJ, Imran M, Khalil I, Saeed F, Neelum S, Et al. Phytochemical profile and pro-healthy properties of Terminalia chebula: A comprehensive review. Int J Food Prop. 2023;26(1):526-51. DOI: 10.1080/10942912.2023.2166951

Dewatisari W. Antibacterial and anti-biofilm Forming activity of secondary metabolites from Sansevieria trifasciata- leaves against Pseudomonas aeruginosa. Indonesian J Pharm. 2022;33(1):100-9. DOI: 10.22146/ijp.2815

Mashamba TG, Adeosun IJ, Baloyi IT, Tshikalange ET, Cosa S. Quorum sensing modulation and inhibition in biofilm forming foot ulcer pathogens by selected medicinal plants. Heliyon. 2022;8(4):e09303. DOI: 10.1016/j.heliyon.2022.e09303 PMID 35520625.

Baloyi IT, Adeosun IJ, Yusuf AA, Cosa SIn Silico and In Vitro Screening of Antipathogenic Properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics (Basel). 2021;10 (6):679. DOI: 10.3390/antibiotics10060679 PMID 34198845

Harada H, Moriya K, Kobuchi H, Ishihara N, Utsumi T. Protein N-myristoylation plays a critical role in the mitochondrial localization of human mitochondrial complex I accessory subunit NDUFB7. Sci Rep. 2023;13(1):22991. DOI: 10.1038/s41598-023-50390-z PMID 38151566

Yuan M, Song ZH, Ying MD, Zhu H, He QJ, Yang B et al. N-myristoylation: from cell biology to translational medicine. Acta Pharmacol Sin. 2020;41(8):1005-15. DOI: 10.1038/s41401-020-0388-4 PMID 32203082

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296-303. DOI: 10.1093/nar/gky427 PMID 29788355

Bienert S, Waterhouse A, de Beer TA, Tauriello G, Studer G, Bordoli L et al. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017; 45(D1):D313-9. DOI: 10.1093/nar/gkw1132 PMID 27899672, PMCID PMC5210589

Wlodawer A. Stereochemistry and validation of macromolecular structures. Methods Mol Biol. 2017;1607:595- 610. DOI: 10.1007/978-1-4939-7000-1_24 PMID 28573590, PMCID PMC5560084

Fan W, Mencius J, Du W, Fan H, Zhu H, Wei D et al. Online bioinformatics teaching practice: comparison of popular docking programs using SARS-CoV-2 spike RBD-ACE2 complex as a benchmark. Biochem Mol Biol Educ. 2021;49(6):833-40. DOI: 10.1002/bmb.21566 PMID 34369638, PMCID PMC8426971

Mamudha M, Sunilson AJ. Extraction, identification and molecular docking studies evaluation of Momordica tuberosa (Roxb) against Anopheles. Indian J Sci Technol. 2021;14(31):2550-6. DOI: 10.17485/IJST/v14i31.913

Sunkara MS, Kuchana V, Kudumula N. Molecular docking strategy for multi-target inhibitor discovery of selected plant constituents in Bauhinia acuminata. J. Ankara: Faculté Pharm / AnkaraEcz. Fak. Derg. 202246(1):144-59.

Al-Rajhi AMH, Qanash H, Almuhayawi MS, Al Jaouni SK, Bakri MM, Ganash M et al. Molecular interaction studies and phytochemical characterization of Mentha pulegium L. constituents with multiple biological utilities as antioxidant, antimicrobial, anticancer and anti-hemolytic agents. Molecules. 2022;27(15): 4824. DOI: 10.3390/molecules27154824 PMID 35956775

Phanumartwiwatha A, Boonchaisri S, Savaspunc K, Chodnakarine A, Sam-ang P. Potential alpha-glucosidase inhibitory activity of root extracts from Morinda citrifolia L. Agric Nat Resour. 2022;56:815-24.