Impact of Pollution and Toxic Stress on Fish Health: Mechanisms, Consequences, and Mitigation Strategies

Sagar Gorakh Satkar

Faculty of Fisheries, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala- 682506, India.

Anil Kumar

Department of Zoology, Baba Raghav Das Post Graduate College, Deoria, Uttar Pradesh -274001, India.

Anjana A.

ICAR-Central Institute of Fisheries Education, Mumbai- 400 061, India.

Saiprasad Bhusare *

ICAR-Central Institute of Fisheries Education, Mumbai- 400 061, India.

Ashish Sahu

Faculty of Fisheries, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala- 682506, India.

Rohit Kumar Gautam

Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh - 226025, India.

*Author to whom correspondence should be addressed.


Pollution poses a dire threat to fish health and aquatic ecosystems, permeating through various pathways and wreaking havoc on biological processes crucial for fish survival. Pollutants infiltrate fish through multiple routes, inducing direct toxicity and disrupting fundamental functions such as metabolism, hormonal regulation, and immune responses. These detrimental effects manifest in a plethora of consequences, including stunted growth, diminished energy reserves, heightened vulnerability to environmental stressors, reproductive impairments, increased susceptibility to diseases, and behavioral alterations that imperil their survival. To address this pressing crisis, proactive measures are indispensable, necessitating stringent regulations, the adoption of sustainable practices, and the enhancement of water treatment facilities to curtail the release of pollutants into aquatic environments. Simultaneously, reactive strategies must be deployed, focusing on remediation efforts to cleanse contaminated areas, facilitating the recovery of fish populations, and undertaking broader ecosystem restoration initiatives. Continuous research and vigilant monitoring play pivotal roles in discerning the nuanced impacts of pollution on fish health and gauging the efficacy of mitigation endeavors. Safeguarding fish populations is imperative for their well-being and preserving the health and equilibrium of the entire aquatic ecosystem, underscoring the urgency of concerted action to combat pollution's detrimental effects.

Keywords: Pollution, toxic stress, fish health, environmental contaminants, water quality, aquatic ecosystems, bioaccumulation, physiological responses

How to Cite

Satkar, S. G., Kumar , A., Anjana A., Bhusare , S., Sahu , A., & Gautam , R. K. (2024). Impact of Pollution and Toxic Stress on Fish Health: Mechanisms, Consequences, and Mitigation Strategies. UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(6), 29–45.


Download data is not yet available.


Hamilton PB, Cowx IG, Oleksiak MF, Griffiths AM, Grahn M, Stevens JR, et al. Population‐level consequences for wild fish exposed to sublethal concentrations of chemicals–a critical review. Fish Fish. 2016;17(3):545-66.

Samuel PO, Edo GI, Oloni GO, Ugbune U, Ezekiel GO, Essaghah AEA, et al. Effects of chemical contaminants on the ecology and evolution of organisms a review. Chem Ecol. 2023;39(10):1071-1107.

Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol. 2023;14:1109461.

Kampezidou D. Behavior effects of a psychotropic pharmaceutical contaminant on Atlantic salmon (Salmo salar) juveniles: Atlantic salmon juveniles exposed to two different oxazepam concentrations.

Carey RO, Migliaccio KW. Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environ Manag. 2009;44:205-17 Available:

Lee JW, Jo AH, Lee DC, Choi CY, Kang JC, Kim JH. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. Environ Res. 2023;236:116600.

Jezierska B, Ługowska K, Witeska M. The effects of heavy metals on embryonic development of fish (a review). Fish Physiol Biochem. 2009;35(4):625-40. Available:

Siraj M, Uddin MJ. Cadmium accumulation in freshwater fish: effects and remediation strategies. Environ Sci Pollut Res; 2023.

McGeer JC, Szebedinszky C, McDonald DG, Wood CM. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout 1: Iono-regulatory disturbance and metabolic costs. Aquat Toxicol. 2000;50(3):231-43.

Bly JE, Quiniou SM, Clem LW. Environmental effects c. Develop Biol Standard. 1997;90:33-43.

Zelikoff JT. Metal pollution-induced immunomodulation in fish. Annu Rev Fish Dis. 1993;3:305-25.

Grosell M. Copper. In: Wood CM, Farrell AP, Brauner CJ, editors. Homeostasis and toxicology of essential metals. Elsevier. 2012;53-133.

Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio. 2007;36(1):12-9. Available:

Hogstrand C. Zinc. In: Wood CM, Farrell AP, Brauner CJ, editors. Homeostasis and toxicology of essential metals. Elsevier. 2011;135-200. Available:

Spry DJ, Wood CM. Zinc influx across the isolated, perfused head preparation of the rainbow trout (Salmo gairdneri) in hard and soft water. Can J Fish Aquat Sci. 1985;42(12):2061-5.

Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596-605.


Borrelle SB, Ringma J, Law KL, Monnahan CC, Lebreton L, McGivern A, et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science. 2020;369(6510):1515-8. Available:

Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013;178:483-92. Available:

Rochman CM, Browne MA, Underwood AJ, van Franeker JA. The ecological impacts of marine debris: unraveling the demonstrated evidence from what is perceived. Ecology. 2013;94(2):300-12. Available:

Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep. 2013;3(1):1-7. Available:

World Health Organization. Safe management of wastes from health-care activities. 2nd ed. World Health Organization; 2018.

Chakraborty S, Veeregowda B, Gowda L, Sannegowda SN, Tiwari R, Dhama K, et al. Biomedical waste management. Interaction. 2013;12-02.

Brodin T, Fick J, Jonsson M, Klaminder J. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science. 2013;339(6121):814-5. Available:

Osman AGM, Mekky TM, Dahab MF, Mahmoud UE. Aquaculture water pollution and diseases of cultured fish: Mini-review. Res J Pharm Technol. 2022;15(8):3997–4001.

Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance. Environ Sci Technol. 2015;49(11):6772–6782. Available:

Smith VH, Tilman GD, Nekola JC. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut. 1999;100(1–3):179–196.

Meador JP, Stein JE, Reichert WL, Varanasi U. Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol. 1995;143:79-165.

Collier TK, Stein JE, Sanborn HR, Heintz R, et al. Field studies of reproductive success and bioindicators of maternal contaminant exposure in English sole (Pleuronectes vetulus). Sci Total Environ. 1998;214:91-114.

Sandahl JF, Baldwin DH, Jenkins JJ, Scholz NL. A sensory system at the interface between urban stormwater runoff and salmon survival. Environ Sci Technol. 2007;41(8):2998-3004.

Smith VH, Schindler DW. Eutrophication science: where do we go from here?. Trends Ecol Evol. 2009;24(4):201-207. Available:

Diaz RJ, Rosenberg R. Spreading dead zones and consequences for marine ecosystems. Science. 2008;321 (5891):926-929. Available:

Le Moal M, Gascuel‐Odoux C, Ménesguen A, Souchon Y, Étrillard C, Levain A, et al. Eutrophication: A new wine in an old bottle? Sci Total Environ. 2019;651:1-11.

Anderson DM, Glibert PM, Burkholder JM. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries. 2002;25(4):704-726.

Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-990. Available:

Sies H, Berndt C, Jones DP. Oxidative stress. Annu Rev Biochem. 2017;86:715-748.

Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of xenobiotics in fish: a role for the aryl hydrocarbon receptor (AhR)? Int J Mol Sci. 2021;22(17):9460.

Reynaud S, Deschaux P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquat Toxicol. 2006;77(2):229-238. Available:

Segner H, Verburg-van Kemenade BL, Chadzinska M. Immunotoxic effects of environmental pollutants in fish. In: Secombes CJ, editor. Fish Physiology. 2017;36B:231-275.

Kausch U, Chairmand IO, Schmidt-Posthaus H. Effects of estrogenic substances in fish. In: Schrenk OD, editor. Fertility and sterility: hormonal contraceptives today and tomorrow. Springer Nature. 2016;169-175.

Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293-342.

Zala SM, Penn DJ. Abnormal behaviours induced by chemical pollution: a review of the evidence and new challenges. Anim Behav. 2004;68(4):649-664. Available:

Nabi M, Tabassum N. Role of environmental toxicants on neurodegenerative disorders. Front Toxicol. 2022;4:837579.

Grue CE, Gardner SC, Gibert PL. On the significance of pollutant-induced alterations in the behaviour of fish and wildlife. Behav Ecotoxicol; 2002.

Crump KL, Trudeau VL. Mercury‐induced reproductive impairment in fish. Environ Toxicol Chem. 2009;28(5):895-907.

Mallatt J. Fish gill structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci. 1985;42(4):630-648. Available:

Fernandes MN, Mazon AF. Environmental pollution and fish gill morphology. In: Val AL, Kapoor BG, eds. Fish Adaptations. Science Publishers. 2003;203-231.

Wendelaar Bonga SE, Lock RAC. Toxicants and osmoregulation in fish. Neth J Zool. 1992;42(2-3):478-493.

Ferreira NG, Morgado R, Santos MJ, Soares AM, Loureiro S. Biomarkers and energy reserves in the isopod Porcellionides pruinosus: the effects of long-term exposure to dimethoate. Sci Total Environ. 2015;502:91-102 Available:

Gourley ME, Kennedy CJ. Energy allocations to xenobiotic transport and biotransformation reactions in rainbow trout (Oncorhynchus mykiss) during energy intake restriction. Comp Biochem Physiol C Toxicol Pharmacol. 2009;150(2):270-278 Available:

Gomes SI, Soares AM, Amorim MJ. Changes in cellular energy allocation in Enchytraeus crypticus exposed to copper and silver—linkage to effects at higher level (reproduction). Environ Sci Pollut Res. 2015;22:14241-14247 Available:

Novais SC, Soares AM, De Coen W, Amorim MJ. Exposure of Enchytraeus albidus to Cd and Zn–Changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. Chemosphere. 2013;90(3):1305-1309.

Verslycke T, Roast SD, Widdows J, Jones MB, Janssen CR. Cellular energy allocation and scope for growth in the estuarine mysid Neomysis integer (Crustacea: Mysidacea) following chlorpyrifos exposure: a method comparison. J Exp Mar Biol Ecol. 2004;306(1):1-16.


Smolders R, Bervoets L, De Coen W, Blust R. Cellular energy allocation in zebra mussels exposed along a pollution gradient: linking cellular effects to higher levels of biological organization. Environ Pollut. 2004;129(1):99-112. Available:

Damian EC, Innocent II, Obinwanne OC, Obinna EC. Cellular energy budget in tropical freshwater fish following exposure to sublethal concentrations of cadmium. J Toxicol Environ Health Sci. 2019;11(7):75-83. Available:

Srivastava P, Singh A, Pandey AK. Pesticides toxicity in fishes: biochemical, physiological and genotoxic aspects. Biochem Cell Arch. 2016;16(2):199-218.

Ji K, Seo J, Liu X, Lee J, Lee S, Lee W, et al. Endocrine-disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55. Available:

Porte C, Janer G, Lorusso LC, Ortiz-Zarragoitia M, Cajaraville MP, Fossi MC, et al. Endocrine disruptors in marine organisms: Approaches and perspectives. Comp Biochem Physiol C Toxicol Pharmacol. 2006;143(3):303–315. Available:

Chatonnet P, Boutou S, Planchenault N, Durrieu G. Biochar-based nanocomposites for contaminant management. In: Lin Z, Khraisheh MAA, eds. Biochar-based Nanocomposites for Environmental Applications. Elsevier; 2014:35-62.

Gutteridge JMC. Lipid peroxidation in mammalian systems. Prog Lipid Res. 1995;34:141-187.

Küster E, Altenburger R. A cross-laboratory validation of an in vitro AChE inhibition assay. Altern Lab Anim. 2006;34:89-92.

Fulton MH, Key PB. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem. 2001; 20(1):37–45.

United States Environmental Protection Agency (EPA). Best Management Practices (BMPs); 2023.

Toossi S, Jones JW. The food and nutrition assistance landscape: Fiscal year 2022 annual report. 2023.

DOI: 10.22004/ag.econ.337564

Clean Water Act (CWA). (33 U.S.C. § 1251 et seq.); 1972. Available:

UNEP. Progress on integrated water resources management. Global baseline for SDG 6 indicator 6.5.1: degree of IWRM implementation.

United Nations Environment Programme; 2018. Available:

Bernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, et al. Synthesizing U.S. river restoration efforts. Science. 2005;308(5722):636-637.

Long RD, Charles A, Stephenson RL. Key principles of marine ecosystem-based management. Mar Policy. 2015;57:53- 60.

Arkema KK, Abramson SC, Dewsbury BM. Marine ecosystem-based management: from characterization to implementation. Front Ecol Environ. 2006;4(10):525- 532.

Pikitch EK, Santora C, Babcock EA, Bakun A, Bonfil R, Conover DO, et al. Ecosystem-based fishery management. Science. 2004;305(5682):346-347.

Leslie HM, Basurto X, Nenadovic M, Sievanen L, Cavanaugh KC, Cota-Nieto JJ, et al. Operationalizing the social-ecological systems framework to assess sustainability. Proc Natl Acad Sci. 2015;112(19):5979-5984.

Pahl-Wostl C. The implications of complexity for integrated resources management. Environ Model Softw. 2007;22(5):561–569.

National Academies of Sciences, Engineering, and Medicine. Facilitating interdisciplinary research. The National Academies Press; 2005.

Aboelela SW, Larson E, Bakken S, Carrasquillo O, Formicola A, Glied SA, et al. Defining interdisciplinary research: Implications for teamwork, mentoring, and research training. Acad Med. 2007; 82(7):729-735.

Katz JS, Martin BR. What is research collaboration? Res Policy. 1997;26(1):1-18.

Tengö M, Brondizio ES, Elmqvist T, Malmer P, Spierenburg M. Connecting diverse knowledge systems for enhanced ecosystem governance: The multiple evidence base approach. AMBIO. 2014; 43:579–591.

Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to test the neurotoxicity of environmental contaminants in the zebrafish model: from behavior to molecular mechanisms. Environ Toxicol Chem. 2021;40(4):989-1006.

Jacquin L, Petitjean Q, Côte J, Laffaille P, Jean S. Effects of pollution on fish behavior, personality, and cognition: some research perspectives. Front Ecol Evol. 2020;86.

Köllner B, Wasserrab B, Zschiesche W, Triebskorn R. Effects of the nonsteroidal antiinflammatory drug diclofenac on the early life stages of the zebrafish (Danio rerio). Aquat Toxicol. 2002;58(1-2):121-130.

Lee JW, Kim JH, Lee DC, Lim HJ, Kang JC. Toxic effects on oxidative stress, neurotoxicity, stress, and immune responses in juvenile olive flounder, Paralichthys olivaceus, exposed to waterborne hexavalent chromium. Biology. 2022;11(5):766.

Lu M, Chang Z, Bae MJ, Oh SM, Chung KH, Park JS. Molecular characterization of the aryl hydrocarbon receptor (AhR) pathway in goldfish (Carassius auratus) exposure to TCDD: The mRNA and protein levels. Fish Shellfish Immunol. 2013;35(2): 469-475.

Song C, Liu B, Ge X, Li H, Xu P. miR-34a/Notch1b mediated autophagy and apoptosis contributes to oxidative stress amelioration by emodin in the intestine of teleost Megalobrama amblycephala. Aquaculture. 2022;547: 737441. Available: