Advancing Neuroscience through Zebrafish: Challenges, Innovations, and Future Directions

Binaya Sapkota

Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) -Autonomous, Anantapur, Andhra Pradesh, 515721, India.

Syed Shuja Asrar

Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) -Autonomous, Anantapur, Andhra Pradesh, 515721, India.

Bandaru Revanth

Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) -Autonomous, Anantapur, Andhra Pradesh, 515721, India.

Pratiksha Gautam

Department of Pharmacy, Purbanchal University School of Health Science, Gothgaon, Morang, Nepal.

Bidhan Sapkota

KIST Medical College and Teaching Hospital, Imadol, Lalitpur, Nepal.

Kanala Somasekhar Reddy

Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) -Autonomous, Anantapur, Andhra Pradesh, 515721, India.

Praveen Kumar Pasala *

Department of Pharmacology, Raghavendra Institute of Pharmaceutical Education and Research (RIPER) -Autonomous, Anantapur, Andhra Pradesh, 515721, India.

*Author to whom correspondence should be addressed.


Abstract

Genetic similarity of zebrafish and humans, their transparency, and rapid development has propelled them to be one of the most preferred models for research in neuroscience. Within this article, there is a brief discussion on zebrafish in the field of neuroscience with the considerations of their neuroanatomy, advantages, recent achievements, drawbacks, and the possible routes for future exploration. Zebrafish are a rare model for neuronal development and or translating/creating neurological disorders. Neuroscientists that study zebrafish have occasionally faced problems with behavioral complexity and lack of established methods. Forward-looking actions include optimization of behavioral assays, adoption of CRISPR/Cas9 for genotype modification, and unification of drug discovery and testing of toxicological effects. Through zebrafish neuroscience research, we are heading towards great heights as the potential role in bridging the knowledge on the brain and neurological disorders is very promising. The successful adoption of new technologies and collaborative methods will be the attending factors to reach a goal of zebrafish model fully exploiting the potential for the neuroscience research.

Keywords: Zebrafish, neuroscience, model organism, genetic manipulation, neurodevelopment, behavioral assays, drug discovery


How to Cite

Sapkota, B., Asrar, S. S., Revanth, B., Gautam, P., Sapkota, B., Reddy, K. S., & Pasala, P. K. (2024). Advancing Neuroscience through Zebrafish: Challenges, Innovations, and Future Directions. UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(9), 164–176. https://doi.org/10.56557/upjoz/2024/v45i94035

Downloads

Download data is not yet available.

References

Bally-Cuif L, Vernier P. Organization and physiology of the zebrafish nervous system. In: Fish Physiology. Elsevier. 2010;29:25-80. Accessed April 5, 2024. Available:https://www.sciencedirect.com/science/article/pii/S154650981002902X

Mrinalini R, Tamilanban T, Kumar VN, Manasa K. Zebrafish–The Neurobehavioural Model in Trend. Neuroscience. 2023;520:95-118.

Soares J, Coimbra AM, Reis-Henriques MA, et al. Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol. Aquat Toxicol. 2009;95(4):330-338.

Davis EE, Frangakis S, Katsanis N. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta BBA-Mol Basis Dis. 2014;1842(10):1960-1970.

Kari G, Rodeck U, Dicker AP. Zebrafish: An emerging model system for human disease and drug discovery. Clin Pharmacol Ther. 2007;82(1):70-80. DOI:10.1038/sj.clpt.6100223

Baxi D. Zebrafish: A versatile animal model to study tumorigenesis process and effective preclinical drug screening for human cancer research. In: Pathak S, Banerjee A, Bisgin A, eds. Handbook of Animal Models and Its Uses in Cancer Research. Springer Nature Singapore; 2023:1039-1049. DOI:10.1007/978-981-19-3824-5_53

Nasiadka A, Clark MD. Zebrafish breeding in the laboratory environment. ILAR J. 2012;53(2):161-168.

Lessman CA. The developing zebrafish (Danio rerio): A vertebrate model for high‐throughput screening of chemical libraries. Birth Defects Res Part C Embryo Today Rev. 2011;93(3):268-280. DOI:10.1002/bdrc.20212

Moretz JA, Martins EP, Robison BD. Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol. 2007;18(3):556-562.

Bruneel B, Witten PE. Power and challenges of using zebrafish as a model for skeletal tissue imaging. Connect Tissue Res. 2015;56(2):161-173. DOI:10.3109/03008207.2015.1013193

Detrich III HW, Westerfield M, Zon LI. Overview of the zebrafish system. Methods Cell Biol. 1998;59:3-10.

Liu K, Petree C, Requena T, Varshney P, Varshney GK. Expanding the CRISPR toolbox in zebrafish for studying development and disease. Front Cell Dev Biol. 2019;7:13.

Wyatt C, Bartoszek EM, Yaksi E. Methods for studying the zebrafish brain: Past, present and future. Eur J Neurosci. 2015;42(2):1746-1763. DOI:10.1111/ejn.12932

Wulliman MF, Rupp B, Reichert H. Neuroanatomy of the zebrafish brain: A topological atlas. Birkhäuser; 2012. Accessed April 5, 2024. Available:https://books.google.com/books?hl=en&lr=&id=yMrzBwAAQBAJ&oi=fnd&pg=PA1&dq=Neuroanatomy+and+Neurodevelopment+of+Zebrafish&ots=y5uLPEiDyA&sig=4S8JPFJzx0LvspoYAcEGpGpfUwg

Panula P, Chen YC, Priyadarshini M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis. 2010;40(1): 46-57.

Chong M, Drapeau P. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish. Dev Neurobiol. 2007;67(7):933-947. DOI:10.1002/dneu.20398

Sajovic P, Levinthal C. Visual cells of zebrafish optic tectum: mapping with small spots. Neuroscience. 1982;7(10):2407-2426.

Bally-Cuif L, Vernier P. Organization and physiology of the zebrafish nervous system. In: Fish Physiology. Vol 29. Elsevier; 2010:25-80. Accessed April 5, 2024. Available:https://www.sciencedirect.com/science/article/pii/S154650981002902X

Saint-Amant L, Drapeau P. Time course of the development of motor behaviors in the zebrafish embryo. J Neurobiol. 1998;37(4):622-632. DOI:10.1002/(SICI)1097-4695(199812)37:4<622::AID-NEU10>3.0.CO;2-S

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310. DOI:10.1002/aja.1002030302

Lewis KE, Eisen JS. From cells to circuits: development of the zebrafish spinal cord. Prog Neurobiol. 2003;69(6):419-449.

Lyons DA, Talbot WS. Glial cell development and function in zebrafish. Cold Spring Harb Perspect Biol. 2015; 7(2):a020586.

Kaas JH. Evolution of the neocortex. Curr Biol. 2006;16(21):R910-R914.

Guo S. Linking genes to brain, behavior and neurological diseases: What can we learn from zebrafish? Genes Brain Behav. 2004;3(2):63-74. doi:10.1046/j.1601-183X.2003.00053.x

MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721-731.

Sakai C, Ijaz S, Hoffman EJ. Zebrafish models of neurodevelopmental disorders: past, present, and future. Front Mol Neurosci. 2018;11:294.

Burgess HA, Burton EA. A critical review of zebrafish neurological disease models- 1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. Oxf Open Neurosci. 2023;2:kvac018.

Kundap UP, Kumari Y, Othman I, Shaikh M. Zebrafish as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical and behavioral approach. Front Pharmacol. 2017;8:249388.

Tayanloo-Beik A, Hamidpour SK, Abedi M, et al. Zebrafish modeling of autism spectrum disorders, current status and future prospective. Front Psychiatry. 2022;13:911770. DOI:10.3389/fpsyt.2022.911770

Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307-318.

Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science. 2008; 322(5904):1065-1069. DOI:10.1126/science.1162493

Graeden E, Sive H. Live imaging of the zebrafish embryonic brain by confocal microscopy. J Vis Exp JoVE. 2009;(26). Accessed April 8, 2024. Available:https://www.academia.edu/download/71165747/601c7409c98a8cfa0de6d57fe295cfc56e73.pdf

Martin NR, Plavicki JS. Advancing zebrafish as a model for studying developmental neurotoxicology. J Neurosci Res. 2020;98(6):981-983. DOI:10.1002/jnr.24621

Gerlai R. Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol Biochem Behav. 2019;178:30-38.

Stevens CH, Reed BT, Hawkins P. Enrichment for laboratory zebrafish—A review of the evidence and the challenges. Animals. 2021;11(3):698.

Lovett-Barron M. Learning-dependent neuronal activity across the larval zebrafish brain. Curr Opin Neurobiol. 2021;67: 42-49.

Shams S, Rihel J, Ortiz JG, Gerlai R. The zebrafish as a promising tool for modeling human brain disorders: A review based upon an IBNS Symposium. Neurosci Biobehav Rev. 2018;85:176-190.

Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci. 2014;37(5):264-278.

Ji P, Wang Y, Peron T, Li C, Nagler J, Du J. Structure and function in artificial, zebrafish and human neural networks. Phys Life Rev; 2023. Accessed April 8, 2024. Available:https://www.sciencedirect.com/science/article/pii/S157106452300043X

de Abreu MS, Giacomini AC, Echevarria DJ, Kalueff AV. Legal aspects of zebrafish neuropharmacology and neurotoxicology research. Regul Toxicol Pharmacol. 2019;101:65-70.

Canedo A, Saiki P, Santos AL, et al. Zebrafish (Danio rerio) meets bioethics: the 10Rs ethical principles in research. Ciênc Anim Bras. 2022;23:e-70884.

Del Bene F, Wyart C. Optogenetics: A new enlightenment age for zebrafish neurobiology. Dev Neurobiol. 2012;72(3):404-414. DOI:10.1002/dneu.20914

Kettunen P. Calcium Imaging in the Zebrafish. In: Islam MdS, ed. Calcium Signaling. Vol 740. Advances in Experimental Medicine and Biology. Springer Netherlands; 2012;1039-1071. DOI:10.1007/978-94-007-2888-2_48

Girdhar K, Gruebele M, Chemla YR. The behavioral space of zebrafish locomotion and its neural network analog. PloS One. 2015;10(7):e0128668.

Colson V, Cousture M, Damasceno D, et al. Maternal temperature exposure impairs emotional and cognitive responses and triggers dysregulation of neurodevelopment genes in fish. PeerJ. 2019;7:e6338.

Levin ED, Cerutti DT. Behavioral neuroscience of zebrafish; 2011. Accessed April 8, 2024. Available:https://europepmc.org/article/nbk/nbk5216

Garcia GR, Noyes PD, Tanguay RL. Advancements in zebrafish applications for 21st century toxicology. Pharmacol Ther. 2016;161:11-21.

Saluja D, Jhanji R, Kaushal S, et al. Importance of zebrafish as an efficient research model for the screening of novel therapeutics in neurological disorders. CNS Neurol Disord-Drug Targets Former Curr Drug Targets-CNS Neurol Disord. 2021;20(2):145-157.

Hruscha A, Krawitz P, Rechenberg A, et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 2013;140(24):4982-4987.

Liu J, Zhou Y, Qi X, et al. CRISPR/Cas9 in zebrafish: an efficient combination for human genetic diseases modeling. Hum Genet. 2017;136(1):1-12. DOI:10.1007/s00439-016-1739-6

Kanungo J, Cuevas E, F Ali S, Paule MG. Zebrafish model in drug safety assessment. Curr Pharm Des. 2014; 20(34):5416-5429.

Yang L, Ho NY, Alshut R, et al. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol. 2009;28(2):245-253.

Doyle JM, Croll RP. A critical review of zebrafish models of Parkinson’s disease. Front Pharmacol. 2022;13:835827.

Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):45.

Sipes NS, Padilla S, Knudsen TB. Zebrafish—As an integrative model for twenty‐first century toxicity testing. Birth Defects Res Part C Embryo Today Rev. 2011;93(3):256-267. DOI:10.1002/bdrc.20214

Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C. Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. Environ Toxicol Chem. 2021;40(4):989-1006. DOI:10.1002/etc.4951

Choi TY, Choi TI, Lee YR, Choe SK, Kim CH. Zebrafish as an animal model for biomedical research. Exp Mol Med. 2021;53(3):310-317.

Baker MR, Goodman AC, Santo JB, Wong RY. Repeatability and reliability of exploratory behavior in proactive and reactive zebrafish, Danio rerio. Sci Rep. 2018;8(1):12114.

Rosello M. Cutting Edge Genome Editing Technologies in Zebrafish: From Efficient and Precise Genetic Modifications to Disease Modeling and Genetic Tool Engineering. PhD Thesis. Sorbonne Université; 2021. Accessed April 8, 2024. Available:https://cnrs.hal.science/tel-03872925/