Beta-Cyfluthrin-Induced Hepatic Alterations in Zebrafish: Enzymatic Profiles and Oxidative Stress Responses

Sandhya Kadiru

Department of Zoology, Sophia College for Women (Autonomous), Mumbai, India.

Roshan C. D’Souza *

Department of Zoology, Sophia College for Women (Autonomous), Mumbai, India.

*Author to whom correspondence should be addressed.


Abstract

Beta-Cyfluthrin is a widely used pesticide belonging to class of synthetic pyrethroids which affects the central and peripheral nervous systems. The current study investigates the impact of beta-Cyfluthrin on the biochemical parameters of liver of zebrafish (Danio sp.). Adult zebrafish were exposed to concentrations of 0.25, 0.5, 1.0, 2.0 and 4.0 µg/L of beta-Cyfluthrin for acute (96 hours) and chronic (21 days) exposure periods respectively (n=20). It was observed that exposure to beta-Cyfluthrin led to variations in biochemical markers in both acute and chronic exposure groups. Liver function tests revealed significant elevated activity of alanine transaminase (ALT) and aspartate transaminase (AST) at exposure concentrations of 2.0 and 4.0 µg/L of beta-Cyfluthrin in both acute and chronic groups, while acid phosphatase (ACP) and alkaline phosphatase (ALP) activity decreased significantly at concentrations of 1.0, 2.0 and 4.0 µg/L in the chronic group. Lipid peroxidation exhibited a concentration and time-dependent increase with significant difference at 1.0, 2.0 and 4.0 µg/L in both acute and chronic groups, while superoxide dismutase (SOD) and peroxidase (PER) levels declined significantly in both acute and chronic exposure groups at exposure concentrations of 1.0, 2.0 and 4.0 µg/L for SOD and 2.0 and 4.0 µg/L for PER.  Catalase (CAT) initially increased significantly in acute groups of 1.0, 2.0 and 4.0 µg/L but decreased in chronic ones. Glutathione S-transferase (GST) levels exhibited a significant increase at lower concentrations of 0.25 µg/L but a decrease at higher concentrations, 1.0, 2.0 and 4.0 µg/L of beta-Cyfluthrin. The level of significance were considered at p<0.05 and p<0.01. This research suggests that exposure to beta-Cyfluthrin leads to hepatic damage in adult zebrafish. This indicates a potential risk to non-target aquatic fauna, through runoff where beta-Cyfluthrin is used as an agricultural pesticide.

Keywords: Zebrafish, beta-Cyfluthrin, pyrethroids, hepatic toxicity, oxidative stress


How to Cite

Kadiru , S., & D’Souza , R. C. (2024). Beta-Cyfluthrin-Induced Hepatic Alterations in Zebrafish: Enzymatic Profiles and Oxidative Stress Responses. UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(11), 190–202. https://doi.org/10.56557/upjoz/2024/v45i114085

Downloads

Download data is not yet available.

References

Bharadwaj K. Production conditions in Indian agriculture. In Rural Development. Routledge. 2023;269-288.

Tirth S. India emerging a colossus in the field of agrochemical exports, Business, TOI; 2023.

Available:https://timesofindia.indiatimes.com/blogs/voices/india-emerging-a-colossus-in-the-field-of-agrochemical-exports/

Singh PB, Singh V. Cypermethrin induced histological changes in gonadotrophic cells, liver, gonads, plasma levels of estradiol-17β and 11-ketotestosterone, and sperm motility in Heteropneustes fossilis (Bloch). Chemosphere. 2008;72(3):422-431.

Available:https://doi.org/10.1016/j.chemosphere.2008.02.026

Miyamoto J. Degradation, metabolism and toxicity of synthetic pyrethroids. Environmental Health Perspectives. 1976;14:15-28.

Available:https://doi.org/10.1289/ehp.761415

Mueller-Beilschmidt D. Toxicology and environmental fate of synthetic pyrethroids. Journal of Pesticide Reform. 1990;10(3): 32-37.

Thatheyus AJ, Selvam AG. Synthetic pyrethroids: toxicity and biodegradation. Appl Ecol Environ Sci. 2013;1(3);33-36.

Available:http://pubs.sciepub.com/aees/1/3/2

Du GuiZhen DG, Shen OuXi SO, Sun Hong SH, Fei Juan FJ, Lu ChunCheng LC, Song Ling SL, Wang XinRu WX. Assessing hormone receptor activities of pyrethroid insecticides and their metabolites in reporter gene assays; 2010.

Wouters W, van den Bercken J. Action of pyrethroids. General Pharmacology: The Vascular System. 1978;9(6):387-398.

Available:https://doi.org/10.1016/0306-3623(78)90023-X

Bayer; 2018.0

Retrieved from:www.cropscience.bayer.in/ Products-H/Brands/Crop-Protection/Insecticide-Solomon.aspx

Jensen-Korte U, Anderson C, Spiteller M. Photodegradation of pesticides in the presence of humic substances. Science of the Total Environment. 1987;62:335-340.

Available:https://doi.org/10.1016/0048-9697(87)90518-3

Cyfluthrin and Beta-Cyfluthrin classification and endpoints. Environmental Protection Authority;2022.

Available:https://www.epa.govt.nz/assets/Uploads/Documents/Hazardous-Substances/Synthetic-Pyrethroids-consultation/APP203936-Draft-Hazard-classification-and-endpoint-memo-Beta-cyfluthrin-and-Cyfluthrin.pdf?vid=2

Lanteigne M, Whiting SA, Lydy MJ. Mixture toxicity of imidacloprid and cyfluthrin to two non-target species, the fathead minnow Pimephales promelas and the amphipod Hyalella azteca. Archives of environmental contamination and toxicology. 2015;68: 354-361.

Availablehttps://doi.org/10.1007/s00244-014-0086-7

Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research—advantages and current limitations. Toxicologic Pathology. 2003;31(1_suppl): 62-87.

Available:https://doi.org/10.1080/01926230390174959

Teraoka H, Dong W, Hiraga T. Zebrafish as a novel experimental model for developmental toxicology. Congenital Anomalies. 2003;43(2):123-132.

Available: https://doi.org/10.1111/j.1741-4520.2003.tb01036.x

Kohen R, Nyska A. Invited review: oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic pathology. 2002; 30(6):620-650.

Available:https://doi.org/10.1080/01926230290166724

Tripathi G, Singh H. Impact of alphamethrin on biochemical parameters of Channa punctatus. Journal of Environmental Biology. 2013;34(2):227-230.

Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety. 2006;64(2):178-189.

Available:https://doi.org/10.1016/j.ecoenv.2005.03.013

Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular longevity; 2014.

Available:https://doi.org/10.1155/2014/360438

Kochhann D, Pavanato MA, Llesuy SF, Correa LM, Riffel APK, Loro VL, Baldisserotto B. Bioaccumulation and oxidative stress parameters in silver catfish (Rhamdia quelen) exposed to different thorium concentrations. Chemosphere. 2009;77(3):384-391.

Available:https://doi.org/10.1016/j.chemosphere.2009.07.022

Ansari S, Ansari BA. Toxic effect of Alphamethrin on catalase, reduced glutathione and lipid peroxidation in the gill and liver of zebrafish, danio rerio. World Journal of Zoology. 2014;9(3):155-161.

National center for biotechnology information. PubChem Compound Summary for CID 56608859, beta-Cyfluthrin; 2024.

Retrieved April 25, 2024 from https://pubchem.ncbi.nlm.nih.gov/compound/beta-Cyfluthrin.

OECD. Test No. 203: Fish, Acute Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris; 2019.

Available:https://doi.org/10.1787/9789264069961-en

OECD. Test No. 230: 21-day Fish Assay, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris; 2009.

Available:https://doi.org/10.1787/9789264076228-en

Takahara S, Hamilton HB, Neel JV, Kobara TY, Ogura Y, Nishimura ET. Hypocatalasemia: a new genetic carrier state. The Journal of Clinical Investigation. 1960;39(4):610-619.

Available:https://doi.org/10.1172/JCI104075

Kochba J, Lavee S, Spiegel-Roy P. Differences in peroxidase activity and isoenzymes in embryogenic ane non-embryogenic ‘Shamouti’orange ovular callus lines. Plant and Cell Physiology. 1977;18(2):463-467.

Available:https://doi.org/10.1093/oxfordjournals.pcp.a075455

Misra HP, Fridovich I. Superoxide dismutase: a photochemical augmentation assay. Archives of Biochemistry and Biophysics. 1977;181(1):308-312.

Available; https://doi.org/10.1016/0003-9861(77)90509-4

Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry. 1974;249(22):7130-7139.

Available:https://doi.org/10.1016/S0021-9258(19)42083-8

Yagi K. Simple assay for the level of total lipid peroxides in serum or plasma. Free radical and antioxidant protocols. 1998; 101-106.

Available:https://doi.org/10.1385/0-89603-472-0:10

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J biol Chem. 1951; 193(1):265-275.

Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology. 1957;28(1):56-63.

Available; https://doi.org/10.1093/ajcp/28.1.56

Kind PRN, King E. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. Journal of clinical Pathology. 1954;7(4): 322.

Available:https://doi.org/10.1136%2Fjcp.7.4.322

King EJ, Armstrong AR. A convenient method for determining serum and bile phosphatase activity. Canadian Medical Association Journal. 1934;31(4):376.

Eni G, Ibor OR, Andem AB, Oku EE, Chukwuka AV, Adeogun AO, Arukwe A. Biochemical and endocrine-disrupting effects in Clarias gariepinus exposed to the synthetic pyrethroids, cypermethrin and deltamethrin. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2019;225;108584.

Available:https://doi.org/10.1016/j.cbpc.2019.108584

Al-Ghanim KA, Mahboob S, Vijayaraghavan P, Al-Misned FA, Kim YO, Kim HJ. Sub-lethal effect of synthetic pyrethroid pesticide on metabolic enzymes and protein profile of non-target Zebra fish, Danio rerio. Saudi Journal of Biological Sciences. 2020;27(1):441-447.

Available:https://doi.org/10.1016/j.sjbs.2019.11.005

Begum G. Carbofuran insecticide induced biochemical alterations in liver and muscle tissues of the fish Clarias batrachus (linn) and recovery response. Aquatic Toxicology. 2004;66(1):83-92.

Available:https://doi.org/10.1016/j.aquatox.2003.08.002

Adeogun AO, Ibor OR, Adeduntan SD, Arukwem A. Intersex and alterations in reproductive development of a cichlid, Tilapia guineensis, from a municipal domestic water supply lake (Eleyele) in Southwestern Nigeria. Science of the Total Environment. 2016;541:372-382.

Available:https://doi.org/10.1016/j.scitotenv.2015.09.061

Yang B, Zou W, Hu Z, Liu F, Zhou L, Yang S, Zhang D. Involvement of oxidative stress and inflammation in liver injury caused by perfluorooctanoic acid exposure in mice. BioMed research international; 2014.

Available:https://doi.org/10.1155/2014/409837

Ansari Shabnam, Ansari BA. Alphamethrin toxicity: effect on the reproductive ability and the activities of phosphatases in the tissues of zebrafish, Danio rerio. Int. J. Life Sci. Pharma Res, 2012 2, 89-100.

Das BK, Mukherjee SC. Toxicity of cypermethrin in Labeo rohita fingerlings: biochemical, enzymatic and haematological consequences. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2003; 134(1):109-121.

Available:https://doi.org/10.1016/S1532-0456(02)00219-3

Sunmonu TO, Owolabi OD, Oloyede OB. Anthracene-induced enzymatic changes as stress indicators in African catfish, Heterobranchus bidorsalis Geoffroy Saint Hilaire, 1809. Research Journal of Environmental Sciences. 2009;3(6);677-686.

Onikienko EA. Enzymatic changes from early stages of intoxication with small doses of chloroorganic insecticides. Gigienari. Fiziol. Truda. Taksikol. Klinikackiev Gos. IZ. Med. Git. Ukr. USSR. 1963;77.

Sayeed I, Parvez S, Pandey S, Bin-Hafeez B, Haque R, Raisuddin S. Oxidative stress biomarkers of exposure to deltamethrin in freshwater fish, Channa punctatus Bloch. Ecotoxicology and environmental safety. 2003;56(2):295-301.

Available: https://doi.org/10.1016/S0147-6513(03)00009-5

Uner N, Oruc EO, Canli M, Sevgiler Y. Effects of cypermethrin on antioxidant enzyme activities and lipid peroxidation in liver and kidney of the freshwater fish, Oreochromis niloticus and Cyprinus carpio (L.). Bulletin of Environmental Contamination and Toxicology. 2001;67(5): 657-664.

Köprücü SŞ, Yonar E, Seker E. Effects of deltamethrin on antioxidant status and oxidative stress biomarkers in freshwater mussel, Unio elongatulus eucirrus. Bulletin of environmental contamination and toxicology. 2008;81:253-257.

Available:https://doi.org/10.1007/s00128-008-9474-x

Ensibi C, Pérez-López M, Rodríguez FS, Míguez-Santiyán MP, Yahya MD, Hernández-Moreno D. Effects of deltamethrin on biometric parameters and liver biomarkers in common carp (Cyprinus carpion L.). Environmental Toxicology and Pharmacology. 2013;36(2):384-391.

Available:https://doi.org/10.1016/j.etap.2013.04.019

Gül Ş, Belge-Kurutaş E, Yıldız E, Şahan A, Doran F. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environment International.3 2004;30(5):605-609.

Available:https://doi.org/10.1016/S0160-4120(03)00059-X

Avci A, Kaçmaz M, Durak İ. Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry. Ecotoxicology and environmental safety. 2005;60(1):101-105.

Available:https://doi.org/10.1016/j.ecoenv.2003.10.003

Atli G, Alptekin Ö, Tükel S, Canli M. Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2006; 143(2):218-224.

Available:https://doi.org/10.1016/j.cbpc.2006.02.003

Özkan F, Gündüz SG, Berköz M, Hunt AÖ, Yalın S. The protective role of ascorbic acid (vitamin C) against chlorpyrifos-induced oxidative stress in Oreochromis niloticus. Fish physiology and Biochemistry. 2012;38:635-643.

Available:https://doi.org/10.1007/s10695-011-9544-6

Song SB, Xu Y, Zhou BS. Effects of hexachlorobenzene on antioxidant status of liver and brain of common carp (Cyprinus carpio). Chemosphere. 2006; 65(4):699-706.

Available:https://doi.org/10.1016/j.chemosphere.2006.01.033

Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Wang X. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere. 2011;85(6):1010-1016.

Available:https://doi.org/10.1016/j.chemosphere.2011.07.024

Iwase T, Tajima A, Sugimoto S, Okuda KI, Hironaka I, Kamata Y, Mizunoe Y. A simple assay for measuring catalase activity: a visual approach. Scientific reports. 2013;3(1):1-4.

Available:https://doi.org/10.1038/srep03081

László A, Matkovics B, Varge SI, Wittman T, Fazekas T. Changes in lipid peroxidation and antioxidant enzyme activity of human red blood cells after myocardial infarction. Clinica Chimica Acta; International Journal of Clinical Chemistry. 1991;203(2-3):413-415.

Available:https://doi.org/10.1016/0009-8981(91)90319-8

Ansari S, Ansari BA. Temporal Variations of CAT, GSH, and LPO in Gills and Livers of Zebrafish, Exposed to Dimethoate. Fisheries & Aquatic Life. 2014;22(2):101-109.

Available:https://doi.org/10.2478/aopf-2014-0009

Shi X, Gu A, Ji G, Li Y, Di J, Jin J, Wang X. Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish. Chemosphere. 2011;85(6):1010-1016.

Available:https://doi.org/10.1016/j.chemosphere.2011.07.024

Ahmad I, Hamid T, Fatima M, Chand HS, Jain SK, Athar M, Raisuddin S. Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochimica et Biophysica Acta (BBA)-General Subjects. 2000;1523(1):37-48.

Available:https://doi.org/10.1016/S0304-4165(00)00098-2

Nieradko-Iwanicka B, Borzęcki A. How Deltamethrin Produces Oxidative Stress in Liver and Kidney. Polish Journal of Environmental Studies. 2016;25(3).

Available:https://doi.org/10.15244/pjoes/61818

Ullah S, Ahmad S, Altaf Y, Dawar FU, Anjum SI, Baig MMFA, Wanghe K. Bifenthrin induced toxicity in Ctenopharyngodon idella at an acute concentration: a multi-biomarkers based study. Journal of King Saud University-Science. 2022;34(2):101752.

Available:https://doi.org/10.1016/j.jksus.2021.101752

Ojha A, Yaduvanshi SK, Srivastava N. Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pesticide Biochemistry and Physiology. 2011;99(2):148-156.

Available:https://doi.org/10.1016/j.pestbp.2010.11.011

Kong Y, Li M, Shan X, Wang G, Han G. Effects of deltamethrin subacute exposure in snakehead fish, Channa argus: Biochemicals, antioxidants and immune responses. Ecotoxicology and environmental safety. 2021;209:111821.

Available:https://doi.org/10.1016/j.ecoenv.2020.111821

Chatterjee A, Bhattacharya R, Chatterjee S, Saha NC. λ cyhalothrin induced toxicity and potential attenuation of hematological, biochemical, enzymological and stress biomarkers in Cyprinus carpio L. at environmentally relevant concentrations: A multiple biomarker approach. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2021;250: 109164.

Available:https://doi.org/10.1016/j.cbpc.2021.109164

Otitoju O, Onwurah IN. Glutathione S-transferase (GST) activity as a biomarker in ecological risk assessment of pesticide contaminated environment. African Journal of Biotechnology. 2007; 6(12).