Developmental and Cytogenetic Toxicity of 3D Printing Material on Sea Urchin (Arbacia lixula)

Özlem Çakal Arslan *

Department of Marine and Inland Water Science and Technology, Faculty of Fisheries, Ege University, 35100 Bornova, Izmir, Turkey.

Kaan Arslan

ITU Development Foundation Schools, 35410 Menderes, Izmir, Turkey.

Başak Topcu

ITU Development Foundation Schools, 35410 Menderes, Izmir, Turkey.

*Author to whom correspondence should be addressed.


Abstract

In this study the ecotoxicity of 3D printing material [polylactic acid (PLA) investigated with marine echinoderm; sea urchin Arbacia lixula. To achieve this goal, (i) fertilization success, spermiyotoxicity and embriyotoxicity exposed to PLA concentrations (0.001, 0.005, 0.01, 0.1 and 1 g/L) were assessed for 72 h. For this purpose, our study is important to make comprehensive evaluations to ensure the safety of bioplastic formulations and to take measures to regulate the use of additives. At the same time, the additive used to increase the durability of bioplastic materials will also allow us to understand the long-term effects on ecosystems, wildlife and human health. Our aim is to minimize possible harm and ensure that the overall environmental impact of bioplastics remains positive.

Keywords: 3D printing, polylactic acid (PLA), sea urchin


How to Cite

Arslan, Özlem Çakal, Arslan, K., & Topcu, B. (2024). Developmental and Cytogenetic Toxicity of 3D Printing Material on Sea Urchin (Arbacia lixula). UTTAR PRADESH JOURNAL OF ZOOLOGY, 45(12), 252–260. https://doi.org/10.56557/upjoz/2024/v45i124124

Downloads

Download data is not yet available.

References

Aznar M, Ubeda S, Dreolin N, Nerín C. Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid (PLA) and its migration to food simulants. J. Chromatogr. A. 2019;1583:1–8. Available:https://doi.org/10.1016/j.chroma.2018.10.055.

Bagheri AR, Laforsch C, Greiner A, Agarwal S. Fate of so-called biodegradable polymers in seawater and freshwater. Global Challenges. 2017;1(4): 1700048. Available:https://doi.org/10.1002/gch2.201700048

European Bioplastics. Bioplastics market data; 2023. Available:https://docs.euro pean-bioplastics.org/publications/market_data/2022/Report_Bioplastics_Market_Data_2022_short_version.pdf (accessed on 19 June 2023)

Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications Macromolecular Rapid Communications. 2000;21(3) pp.117-132.

Cheng YL, Zhang LC, Chen F, et al. Particle emissions of materialextrusion-type desktop 3D printing: the effects of infill. International Journal of Precision Engineering and Manufacturing-green Technology. 2018;5(4):487e497. Available:https://doi.org/10.1007/s40684-018-0052-3.

Echeverría TBR. Acute Toxicity of Bioplastic Leachates to Paracentrotus lividus Sea Urchin Larvae. Mar. Environ. Res. 2022;176:105605.

Greene J. Marine Biodegradation of PLA, PHA, and Bio-additive Polyethylene Based on ASTM D7081. ACADEMIA; 2012.

Chiulan I, Frone A, Brandabur C, Panaitescu D. Recent Advances in 3D Printing of Aliphatic Polyesters Bioengineering. 2017;5(1):2.

Montalvão GR, Moshrefi-Torbati M, Hamilton A, Machado R, João A. Behaviour of 3D printed PLA and PLA-PHA in marine environments. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2020;424(1):012013.

Oliviero M, Tato T, Schiavo S, Fernández V, Manzo S, Beiras R. Leachates of micronized plastic toys provoke embryotoxic effects upon sea urchin Paracentrotus lividus. Environmental Pollution. 2019;247:706-715.

Li X, Luo J, Zeng H, Zhu L, Lu X. Microplastics decrease the toxicity of sulfamethoxazole to marine algae (Skeletonema costatum) at the cellular and molecular levels. Science of the Total Environment. 2022;824:153855.

Pagter E, Frias J, Kavanagh F, Nash R. Differences in Microplastic Abundances within Demersal Communities Highlight the Importance of an Ecosystem-Based Approach to Microplastic Monitoring. Mar. Pollut. Bull. 2020;160:111644. [Google Scholar] [CrossRef]

Expósito N, Rovira J, Sierra J, Gimenez G, Domingo JL, Schuhmacher M. Levels of microplastics and their characteristics in molluscs from North-West Mediterranean Sea: Human intake. Mar. Pollut. Bull. 2022;181:113843.

Kane IA, Clare MA, Miramontes E, Wogelius R, Rothwell JJ, Garreau P, Pohl F. Seafloor microplastic hotspots controlled by deep-sea circulation. Science. 2020; 368(6495). Available:https://doi.org/10.1126/science.aba5899

Khan B, Bilal Khan Niazi M, Samin G, Jahan Z. Thermoplastic starch: A possible biodegradable food packaging material—a review. In: Journal of Food Process Engineering, vol. 40. Blackwell Publishing Inc; 2017. Available:https://doi.org/10.1111/jfpe.12447, 3

Khatiwada JR, Madsen C, Warwick C, Shrestha S, Chio C, Qin W.

Interaction between polyethylene terephthalate (PET) microplastic and microalgae (Scenedesmus spp.): Effect on the growth, chlorophyll content, and heteroaggregation. Environ. Adv. 2023;13:100399. Available:https://doi.org/10.1016/j.envadv.2023.100399

Abeynayaka A, Kojima F, Miwa Y, Ito N, Nihei Y, Fukunaga Y, Yashima Y, Itsubo N. Rapid Sampling of Suspended and Floating Microplastics in Challenging Riverine and Coastal Water Environments in Japan. Water. 2020;12:1903.

Andrews LS, Clary JJ. Review of the toxicity of multifunctional acrylates. J Toxicol Environ Health Part Curr Issues. 1986;19(2):149–164.

Pagano G, Esposito A, Bove P, De Angelis M, Rota A, Giordano GG. The effects of hexevalent and trivalent chromium on fertilization and development sea urchins, Environ. Res. 1983;30: 42-452.

Rodriguez-Hernandez AG, Munoz-Tabares JA, Aguilar-Guzm ~ an JC, Vazquez Duhalt R, A novel and simple method for polyethylene terephthalate (PET) nanoparticle production. Environ. Sci.: Nano. 2019;6:2031e2036. Available:https:// doi.org/10.1039/C9EN00365G

Uribe-Echeverría T, Beiras R. Acute toxicity of bioplastic leachates to Paracentrotus lividus sea urchin larvae. Marine Environmental Research. 2022; 176:105605.

Brusca RC, Brusca GJ. Phylum echinodermata. In: Invertebrates. Sinauer Associates Sunderland, MA. 1990;801–839.

Bulleri F, Benedetti-Cecchi L, Cinelli F. Grazing by the sea urchins Arbacia lixula L, Paracentrotus lividus Lam. in the Northwest Mediterranean. Journal of Experimental Marine Biology and Ecology. 1999 Aug 2;241(1):81-95.

Bonaviri C, Vega Fernández T, Fanelli G, Badalamenti F, Gianguzza P. Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern Mediterranean. Marine Biology. 2011. Nov;158:2505-13.

Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras,R. Poly (Lactic Acid)—Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. 2016;107:333– 366.

Arslan OC, Parlak H. Embryotoxic effects of nonylphenol and octylphenol in sea urchin Arbacia lixula, Ecotoxicology. 2007; 16:439–444.

Stephens B, Azimi P, Orch Z, et al. Ultrafine particle emissions from desktop 3D printers. Atmos. Environ. 2013;79: 334e339. Available:https://doi.org/10.1016/ j.atmosenv.2013.06.050.

Rogers T. Everything You Need To Know About Polylactic Acid (PLA) [online] Creativemechanisms.com; 2018. Available:https://www.creativemechanisms.com/blog/learn-aboutpolylacticacid-pla-prototypes [Accessed 5 Sep. 2018]

Green DS. Effects of microplastics on European flat oysters, Ostrea edulis and their associated benthic communities. Environ. Pollut. 2016;216:95–103. Available:https://doi.org/10.1016/j.envpol.2016.05.043

Anderson G, Shenkar N. Potential effects of biodegradable single-use items in

the sea: Polylactic acid (PLA) and solitary ascidians. Environ. Pollut. 2021;268: 115364 Available:https://doi.org/10.1016/j.envpol.2020.115364.

Zhang L, Huang C, Xu Y, Huang H, Zhao H, Wang J, Wang S. Synthesis and characterization of antibacterial polylactic acid film incorporated with cinnamaldehyde inclusions for fruit packaging. Int. J. Biol. Macromol. 2020;164:4547–4555. Available:https://doi.org/10.1016/j.ijbiomac.2020.09.065.

Mainwaring G, Foster JR, Lund V, Green T. Methyl methacrylate toxicity in rat nasal epithelium: Studies of the mechanism of action and comparisons between species. Toxicology. 2001;158(3):109–118.

Macdonald NP, Zhu F, Hall CJ, Reboud J, Crosier PS, Patton EE, Wlodkowic D, Cooper JM. Assessment of biocompatibility of 3D printed photopolymers using zebrafish embryo toxicity assays. Lab Chip. 2016;16(2):291–297

Walpitagama M, Carve M, Douek AM, Trestrail C, Bai Y, Kaslin J, Wlodkowic D. Additives migrating from 3D-printed plastic induce developmental toxicity and neuro-behavioural alterations in early life zebrafish (Danio rerio). Aquatic Toxicology. 2019;213:105227.

An G, Na J, Song J, Jung J. Chronic toxicity of biodegradable microplastic (Polylactic acid) to Daphnia magna: A comparison with polyethylene terephthalate. Aquatic Toxicology. 2024; 266:106790.

Ballentine M, Kennedy A, Melby N, Bednar A, Moser R, Moores LC, et al. Acute and chronic toxicity of uncured resin feedstocks for vat photopolymerization 3D printing to a Cladoceran (Ceriodaphnia Dubia). Bulletin of Environmental Contamination and Toxicology. 2023;110(3):56.