TOXICOLOGICAL AND BIOCHEMICAL IMPACT OF SOME BIOINSECTICIDES AGAINST THE LARVAE OF THE RED PALM WEEVIL, Rhynchophorus ferrugineus (OLIVIER) UNDER LABORATORY CONDITIONS

Main Article Content

EMAN S. ELREHEWY
AHMED BARAKAT

Abstract

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), is one of the most important and destructive pests for date palms causing high economic losses. Several control methods have been applied to manage this pest. Intensive use of conventional insecticides to control RPW successfully minimized the weevil number, but they are still harmful for the environment as they cause pollution and damage other useful creatures. The present study aimed to find suitable, effective, and safe alternative control means. In addition, the impact of tested compounds on the enzymatic activity of the third instar larvae were assayed spectrophotometrically. Four commercial insecticides were applied against the 3rd instar larvae of RPW under laboratory conditions and the LC50 values were estimated. Larvae that survived treatment were collected 24h post treatment and were prepared for further enzymatic activities analysis. All experimentations were carried out at Wood and tree scavenger research department, Plant protection research institute, Agricultural research center. Results showed that Dr. Sure® was the most toxic compound according to low LC50 value obtained. In addition, results revealed that BIO-MAGIC® was the least toxic as the high LC50 value compared to the other compounds. In addition, results revealed significant impacts on the detoxifying enzymes in the 3rd instar larvae treated with LC50 of tested compounds as a defensive response against those compounds. These results reveal the suitability of the non-conventional insecticides to control the youngest larval instars effectively.

Keywords:
Red palm weevil, Rhynchophorus ferrugineus, detoxifying enzyme, esterases, acetyl cholinesterase, acid phosphatase, alkaline phosphatase, glutathione-s-transferase, cytochrome P450

Article Details

How to Cite
ELREHEWY, E. S., & BARAKAT, A. (2021). TOXICOLOGICAL AND BIOCHEMICAL IMPACT OF SOME BIOINSECTICIDES AGAINST THE LARVAE OF THE RED PALM WEEVIL, Rhynchophorus ferrugineus (OLIVIER) UNDER LABORATORY CONDITIONS. UTTAR PRADESH JOURNAL OF ZOOLOGY, 42(21), 19-27. Retrieved from http://mbimph.com/index.php/UPJOZ/article/view/2524
Section
Original Research Article

References

Giblin-Davis RM. Borers of palms. In F. W. Howard, D. Moore, R. M. Giblin-Davis, & R. G. Abad (Eds.), Insects on palms (1st ed.,). CABI Publishing. 2001;267–304. DOI:https://doi.org/10.1653/0015-4040(2002)085[0402:iop]2.0.co;2

Abdel-Raheem MA, ALghamdi HA, Reyad NF. Virulence of fungal spores and silver nano-particles from entomopathogenic fungi on the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae). Egyptian Journal of Biological Pest Control. 2019;29(1). DOI:https://doi.org/10.1186/s41938-019-0200-2

Gindin G, Levski S, Glazer I, Soroker V. Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus. Phytoparasitica. 2006;34(4):370–379. DOI:https://doi.org/10.1007/BF02981024

Murphy S, Briscoe B. The red palm weevil as an alien invasive: Biology and the prospects for biological control as a component of IPM. Biocontrol News and Information. 1999;20(1):35–46.

Saleh MRA. Red palm weevil, Rhynchophorus ferruginous (Oliver) in the first record for Egypt and indeed the African continent list No: 10634 Africa collection No. In International Institute of Entomol, 56Queen5 gate. London, Sw. 1992;75.

Abdelsalam SA, Alzahrani AM, Elmenshawy OM, Abdel-Moneim AM. Spinosad induces antioxidative response and ultrastructure changes in males of red palm weevil rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Journal of Insect Science. 2016;16(1):106. DOI:https://doi.org/10.1093/jisesa/iew089

Hamadah KSDisturbance of phosphatase and transaminase activities in grubs of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) by certain insecticidal compounds. The Journal of Basic and Applied Zoology. 2019;80(1):1– 8. DOI:https://doi.org/10.1186/s41936-019-0123-1

Dembilio Ó, Llácer E, de Altube M. del MM, Jacas JA. Field efficacy of Imidacloprid and Steinernema carpocapsae in a chitosan formulation against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science. 2010;66(4):365– 370. DOI:https://doi.org/10.1002/ps.1882

Hussain A, Rizwan-ul-Haq M, Al-Ayedh H, Ahmed S, Al-Jabr AM. Effect of Beauveria bassiana infection on the feeding performance and antioxidant defence of red palm weevil, Rhynchophorus ferrugineus. BioControl. 2015;60(6), 849–859. DOI:https://doi.org/10.1007/s10526-015-9682-3

Hussain A, Rizwan-ul-Haq M, Al-Ayedh H, Aljabr AM. Susceptibility and immune defence mechanisms of rhynchophorus ferrugineus (Olivier) (coleoptera: Curculionidae) against entomopathogenic fungal infections. International Journal of Molecular Sciences. 2016;17(9):1518. DOI:https://doi.org/10.3390/ijms17091518

Francesca N, Alfonzo A, Lo Verde G, Settanni L, Sinacori M, Lucido P, Moschetti G. Biological activity of Bacillus spp. evaluated on eggs and larvae of red palm weevil Rhynchophorus ferrugineus. Annals of Microbiology. 2015;65(1):477–485. DOI:https://doi.org/10.1007/s13213-014-0881-4

Pu YC, Ma TL, Hou YM, Sun M. An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Pest Management Science. 2017;73(7):1494–1502. DOI:https://doi.org/10.1002/ps.4485

Salama HS, Ismail IA. Potential of certain natural extracts for the control of the red palm weevil, Rhynchophorus ferrugineus (Oliver). Archives of Phytopathology and Plant Protection. 2007;40(4):233–236. DOI:https://doi.org/10.1080/03235400500383669

Abdullah M. Toxicological and histopathological studies of Boxus chinensis oil and precocene II on larvae of the red palm weevil Rynchophorus ferrugineus (Oliver) (Coleoptera : Curculionidae ). Egyptian Academic Journal of Biological Sciences. A, Entomology. 2009;2(2):45–54. DOI:https://doi.org/10.21608/eajbsa.2009.15428

Shukla P, Vidyasagar PSPV, Aldosari SA, Abdel-Azim M. Antifeedant activity of three essential oils against the red palm weevil, rhynchophorus ferrugineus. Bulletin of Insectology. 2012;65(1):71–76. Available:http://cisr.ucr.edu/red_palm_weevil.html

Cangelosi B, Clematis F, Monroy F, Roversi PF, Troiano R, Curir P, Lanzotti V. Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the Red Palm Weevil Rhynchophorus ferrugineus Olivier. Phytochemistry. 2015;115(1):216–221. DOI:https://doi.org/10.1016/j.phytochem.2015.02.008

Hussain A, Rizwan-ul-Haq M, AlJabr AM. Susceptibility, antioxidant defense, and growth inhibitory response of Rhynchophorus ferrugineus olivier (Coleoptera: Curculionidae) against the Virulence of Metarhizium anisopliae Isolates. Universal Journal of Plant Science. 2017;5(2):17–23. DOI:https://doi.org/10.13189/ujps.2017.050201

Lin GLE, Salim JM, Ahmad MF, Azmi WA. Entomopathogenic fungi isolated from the soil of Terengganu, Malaysia as potential bio-pesticides against the Red Palm Weevil, Rhynchophorus ferrugineus. Journal of Sustainability Science and Management. 2017;12(2):71–79.

El Husseini MM. Efficacy of the fungus Beauveria bassiana (Balsamo) Vuillemin on the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) larvae and adults under laboratory conditions. Egyptian Journal of Biological Pest Control. 2019;29(1):1–4. DOI:https://doi.org/10.1186/s41938-019-0155-3

Saleem MA, Qayyum MA, Ali M, Amin M, Tayyab M, Maqsood S. Effect of sub-lethal doses of beauveria bassiana and nitenpyram on the development of red palm weevil, rhynchophorus ferrugineus (olivier). Pakistan Journal of Zoology. 2019;51(2):559–565. DOI:https://doi.org/10.17582/journal.pjz/2019.51.2.559.565

Ahmed R, Freed S. Biochemical resistance mechanisms against chlorpyrifos, imidacloprid and lambda-cyhalothrin in Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Crop Protection. 2021a;143(February):105568. DOI:https://doi.org/10.1016/j.cropro.2021.105568

AlJabr AM, Hussain A, Rizwan-ul-Haq M, Al-Ayedh H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules. 2017;22(1):1–12. DOI:https://doi.org/10.3390/molecules22010169

Hussain A, Rizwan-Ul-Haq M, AlJabr AM, Al-Ayedh H. Lethality of sesquiterpenes reprogramming red palm weevil detoxification mechanism for natural novel biopesticide development. Molecules. 2019; 24(9):1– 13. DOI:https://doi.org/10.3390/molecules24091648

Schmutterer H. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual Review of Entomology. 1990;35(1):271–297. DOI:https://doi.org/10.1146/annurev.en.35.010190.001415

Sittichaya W, Beaver R. Rubberwood-destroying beetles in the eastern and gulf areas of Thailand (Coleoptera: Bostrichidae, Curculionidae: Scolytinae and Platypodinae). Songklanakarin Journal of Science and Technology. 2009;31(4):381–387.

Pant H, Tripathi S. Effect of neem seed oil fumigation on wooddestroying insect. International Wood Products Journal. 2011;2(2):95–100. DOI:https://doi.org/10.1179/2042645311Y.0000000009

Merghem A, Mohamed AER. Impact of neem extracts, Azadirachta indica A. Juss induced against red palm weevil, Rhynchophorus ferrugineus (Olivier) attacking date palm orchards in Egypt. 12th Arab Congress of Plant Protection, ACPP, 4-10 November, 2017, Hurghada, Egypt. 2017;9(2):109–117. DOI:https://doi.org/10.1016/j.cropro.2017.12.016

Kaakeh W, Abou-Nour MM, Khamis AA. Mass rearing of the red palm weevil, Rhynchophorus ferrugineus Oliv, on Sugarcane and Artificial Diets for Laboratory Studies: Illustration of Methodology. Proc. Second International Conference on Date Palm. 2001;344–357.

Abbott WS. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 1925;18(2):265–267. DOI:https://doi.org/10.1093/jee/18.2.265a

Finney DJ. Statisical logic in the monitoring of reactions to therapeutic drugs. Methods of Information in Medicine. 1971;10(4):237–245. DOI:https://doi.org/10.1055/s-0038-1636052

Klein B, Read PA, Babson AL. Rapid method for the quantitative determination of serum alkaline phosphatase. Clinical Chemistry. 1960;6(3):269–275. DOI:https://doi.org/10.1093/clinchem/6.3.269

Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 1961;7(2):88–95. DOI:https://doi.org/10.1016/0006-2952(61)90145-9

Habig WH, Pabst MJ, Jakoby WB. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130–7139. DOI:https://doi.org/10.1016/S0021-9258(19)42083-8

Omura T, Satao R. The carbon monoxide-binding pigment of liver microsomes. I. evidence for its hemoprotein nature. In The Journal of Biological Chemistry. 1964a;239(7). Available:http://www.ncbi.nlm.nih.gov/pubmed/14209971

Omura T, Sato R. The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. The Journal of Biological Chemistry. 1964b;239(7):2370–2378. DOI:https://doi.org/10.1016/S0021-9258(20)82245-5

Snedecor GW, Cochran WG. Statistical methods (7th ed.). The Iowa State University Press; 1980.

Hussein K, Shoukry I, Ahmad F, Gad M. Effect of some plant extracts and nicotinamide on certain histopathological aspects in the red palm weevil larvae, Rhynchophorus ferrugineus (Oliver) (Coleoptera: Curculionidae). Advances In Natural And Applied Sciences. 2018;12(6):7–11. DOI:https://doi.org/10.22587/anas.2018.12.6.2

Mehdi MZ, Wakil W, Jan H, Raza MM, Shah Q, Zia-ul-Haq M. Evaluation of Entomopathogenic nematode and fungi alone and their combination against red palm weevil, Rhynchophorus ferrugineus (Olivier). Journal of Entomology and Zoology Studies. 2018;6(2):2038–2042.

Ishak I, Ng LC, Haris-Hussain M, Jalinas J, Idris AB, Azlina Z, Samsudin A, Wahizatul AA. Pathogenicity of an indigenous strain of the entomopathogenic fungus metarhizium anisopliae (Hypocreales: Clavicipitaceae) (MET-GRA4 Strain) as a potential biological control agent against the red palm weevil (Coleoptera: Dryophthoridae). Journal of Economic Entomology. 2020;113(1):43–49. DOI:https://doi.org/10.1093/jee/toz233

Ragheb DA, Ali MA, Bekhiet HK, El-Feshaway AA. Biochemical effects of the entomopathogenic fungus, Beauveria bassiana on the red palm weevil, Rhynchophorus /ferrugineus. Egyptian Journal of Agricultural Research. 2018;96(2):403–414.

Fahmy NM, Amin TR. Partial kinetic analysis of haemolymph esterases from red palm weevil; Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae). Egyptian Academic Journal of Biological Sciences, C. Physiology & Molecular Biology. 2019;11(3):169–180.

Nikookar SH, Fazeli-Dinan M, Ziapour SP, Ghorbani F, Salim-Abadi Y, Vatandoost H, Hanafi-Bojd AA, Enayati A. First report of biochemical mechanisms of insecticide resistance in the field population of culex pipiens (Diptera: Culicidae) from sari, Mazandaran, north of Iran. Journal of Arthropod-Borne Diseases. 2019;13(4):378–390. DOI:https://doi.org/10.18502/jad.v13i4.2234

Gharib AM, El-Hassawy MMM, Ali FAF. Evolution of resistance to chlorpyrifos and lambda-cyhalothrin insecticides against culex pipiens populations. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest Control. 2020;12(2):189–201. DOI:https://doi.org/10.21608/eajbsf.2020.122318

Hemingway J, Karunaratne SHPP. Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology. 1998; 12(1):1–12. DOI:https://doi.org/10.1046/j.1365-2915.1998.00082.x

Serebrov VV, Gerber ON, Malyarchuk AA, Martemyanov VV, Alekseev AA, Glupov VV. Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L. (Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biology Bulletin. 2006;33(6):581–586. DOI:https://doi.org/10.1134/S1062359006060082

Chen XD, Seo M, Stelinski LL. Behavioral and hormetic effects of the butenolide insecticide, flupyradifurone, on Asian citrus psyllid, Diaphorina citri. Crop Protection. 2017;98:102–107. DOI:https://doi.org/10.1016/j.cropro.2017.03.017

Zibaee A, Bandani AR, Tork M. Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology. 2009;19(5): 485–498. DOI:https://doi.org/10.1080/09583150902847127

Zibaee A, Sendi JJ, Ghadamyari M, Alinia F, Etebari K. Diazinon resistance in different selected strains of chilo suppressalis (Lepidoptera: Crambidae) in Northern Iran. Journal of Economic Entomology. 2009;102(3):1189–1196. DOI:https://doi.org/10.1603/029.102.0343

Dubovskiy IM, Slyamova ND, Kryukov VY, Yaroslavtseva ON, Levchenko MV, Belgibaeva AB, Adilkhankyzy A, Glupov VV. The activity of nonspecific esterases and glutathione-S-transferase in Locusta migratoria larvae infected with the fungus Metarhizium anisopliae (Ascomycota, Hypocreales). Entomological Review. 2012;92(1):27–31. DOI:https://doi.org/10.1134/S0013873812010022

Noskov YA, Polenogova OV, Yaroslavtseva ON, Belevich OE, Yurchenko YA, Chertkova EA, Kryukova NA, Kryukov VY, Glupov VV. Combined effect of the entomopathogenic fungus Metarhizium robertsii and avermectins on the survival and immune response of Aedes aegypti larvae. PeerJ. 2019;(10):1–23. DOI:https://doi.org/10.7717/peerj.7931

Ismail HM, Freed S, Naeem A, Malik S, Ali N, Hillyer J. The Effect of Entomopathogenic Fungi on Enzymatic Activity in Chlorpyrifos-Resistant Mosquitoes, Culex quinquefasciatus (Diptera: Culicidae). Journal of Medical Entomology. 2020;57(1):204–213. DOI:https://doi.org/10.1093/jme/tjz143

Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O’Keefe M, McKenzie JA, Batterham P, Daborn, PJ. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(36):12807– 12812. DOI:https://doi.org/10.1073/pnas.0503709102

Wang J, Han B, Chen G, Xu F, Yang Q, Cui T. Micromachining of SrTiO3 steps for high-Tc step edge junction dc SQUIDs. Journal of Micromechanics and Microengineering. 2004;14(1):1–5. DOI:https://doi.org/10.1088/0960-1317/14/1/301

Praveena A, Sanjayan KP. Inhibition of acetylcholinesterase in three insects of economic importance by linalool, a monoterpene phytochemical. Insect Pest Management, A Current Scenario. 2011;January 2010:240–345.

Jukic M, Politeo O, Maksimovic M, Milos M, Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytotherapy Research. 2007;21(3):259–261. DOI:https://doi.org/10.1002/ptr.2063

López-Hernández GY, Thinschmidt JS, Zheng G, Zhang Z, Crooks PA, Dwoskin LP, Papke RL. Selective inhibition of acetylcholine-evoked responses of α7 neuronal nicotinic acetylcholine receptors by novel tris- and tetrakis-azaaromatic quaternary ammonium antagonists. Molecular Pharmacology. 2009; 76(3):652–666. DOI:https://doi.org/10.1124/mol.109.056176

López MD, Pascual-Villalobos MJ. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Industrial Crops and Products. 2010;31(2):284–288. DOI:https://doi.org/10.1016/j.indcrop.2009.11.005

Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. In Annual Review of Pharmacology and Toxicology. Annual Reviews. 2005;45:51–88). . DOI:https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

Papadopoulos AI, Boukouvala E, Kakaliouras G, Kostaropoulos J, Papadopoulou-Mourkidou E. Effect of organophosphate and pyrethroid insecticides on the expression of GSTs from Tenebrio molitor pupae. Pesticide Biochemistry and Physiology. 2000;68(1):26–33. DOI:https://doi.org/10.1006/pest.2000.2489

AlJabr AM, Hussain A, Rizwan-ul-Haq M, Al-Ayedh H. Toxicity of plant secondary metabolites modulating detoxification genes expression for natural red palm weevil pesticide development. Molecules. 2017;22(1):1–12. DOI:https://doi.org/10.3390/molecules22010169

Yan TK, Asari A, Salleh SA, Azmi WA. Eugenol and thymol derivatives as antifeedant agents against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. Insects. 2021;12:551.

Sakharov IY, Makarova IE, Ermolin GA. Chemical modification and composition of tetrameric isozyme K of alkaline phosphatase from harp seal intestinal mucosa. Comparative Biochemistry and Physiology -- Part B: Biochemistry And. 1989;92(1):119–122. DOI:https://doi.org/10.1016/0305-0491(89)90322-2

Nathan S. Senthil, Chung PG, Murugan K. Effect of botanical insecticides and bacterial toxins on the gut enzyme of the rice leaffolder Cnaphalocrocis medinalis. Phytoparasitica. 2004;32(5):433–443. DOI:https://doi.org/10.1007/BF02980437

Nathan, Sengottayan Senthil, Chung PG, Murugan K. Combined effect of biopesticides on the digestive enzymatic profiles of Cnaphalocrocis medinalis (Guenée) (the rice leaffolder) (Insecta: Lepidoptera: Pyralidae). Ecotoxicology and Environmental Safety. 2006;64(3):382–389. DOI:https://doi.org/10.1016/j.ecoenv.2005.04.008

Sridhara S, Bhat JV. Alkaline and acid phosphatases of the silkworm, Bombyx mori L. Journal of Insect Physiology. 1963;9(5):693–701. DOI:https://doi.org/10.1016/0022-1910(63)90012-X

El-Banna AA, Abd El-Kareem SMI. Changes in enzymatic activities of Spodoptera littoralis (Boisd.) larvae treated with the bioinsecticides Protecto ® , Viruset ® , and Profect ®. African J. Biol. Sci. 2014; 10(1):25–33. Available:www.aasd.byethost13.com

El-Banna HMS, El-Sabagh MMMA, Abd El-Kareem SMI, Ibrahim SA. Susceptibility of different stages of a field strain of the cotton leafwor Spodoptera littoralis (Boisd.) to two bioinsecticides and two insect growth regulator compounds under laboratory conditions. Uttar Pradesh Journal of Zoology. 2020;41(12):20–27.

Kandil MA, Fouad EA, El Hefny DE, Abdel-Mobdy YE. Toxicity of fipronil and emamectin benzoate and their mixtures against cotton leafworm, spodoptera littoralis (Lepidoptera: Noctuidae) with relation to GABA content. Journal of Economic Entomology. 2020;113(1):385–389. DOI:https://doi.org/10.1093/jee/toz232