ACUTE TOXICITY COMPARATIVE STUDIES OF CHLORPYRIFOS, ENDOSULFAN AND PERMETHRIN TO ZEBRAFISH, Danio rerio (CYPRINIDAE)

PDF

Published: 2021-12-30

Page: 1135-1142


SOORARAPU VENKANNA

Department of Zoology, Osmania University, Hyderabad, India.

VENKANNA BANDARU

VV Biotech, Hyderabad, India.

VENKATESHWARA RAO JOGINAPALLY *

Department of Zoology, Osmania University, Hyderabad, India.

*Author to whom correspondence should be addressed.


Abstract

Organic pesticides, which pollute natural water through agricultural waste, draining off water and other sources, have a negative impact on fish and other aquatic organisms. The primary goal of this research was to assess and compare the acute toxicity of three types of pesticides: organochlorine (endosulfan), organophosphate (chlorpyrifos), and synthetic pyrethroid (permethrin), all of which are routinely employed in agricultural practices. These three insecticides were given to adult male and female zebrafish at random. Each insecticide was subjected to its own set of toxicological tests. For a period of 96 hours, the death rate of zebrafishes was tracked in a laboratory setting. This preclinical data gives information about the safety of drugs for human usage. The Probit Analysis Statistical approach was used to evaluate the results of the toxicological tests. The toxicity tests gave the 96-h LC50 values as 0.10, 0.16 and 0.13µg/l for endosulfan, chlorpyrifos and permethrin respectively. The LC50 values revealed that all the three pesticides were highly toxic and the zebrafish showed highest sensitivity towards endosulfan followed by permethrin and chlorpyrifos. The LC50 values demonstrated that all three pesticides were extremely harmful to zebrafish, with endosulfan being the most sensitive, followed by permethrin and chlorpyrifos.

Prior to death, the fish showed signs of respiratory distress (such as gasping for air), loss of balance, and erratic swimming. The toxicity of these pesticides was also discovered to be time and concentration dependent. It is concluded that these insecticides are exceedingly dangerous and should be discontinued with considerable cautions. Pesticidal contamination in aquatic environments can be assessed using zebrafish (Danio rerio) as a bioindicator.

Keywords: Zebrafish, acute toxicity, endosulfan, chlorpyrifos, permethrin


How to Cite

VENKANNA, S., BANDARU, V., & JOGINAPALLY, V. R. (2021). ACUTE TOXICITY COMPARATIVE STUDIES OF CHLORPYRIFOS, ENDOSULFAN AND PERMETHRIN TO ZEBRAFISH, Danio rerio (CYPRINIDAE). UTTAR PRADESH JOURNAL OF ZOOLOGY, 42(24), 1135–1142. Retrieved from https://mbimph.com/index.php/UPJOZ/article/view/2864

Downloads

Download data is not yet available.

References

Savary S, Willocquet L, Pethybridge SJ, et al. The global burden of pathogens and pests on major food crops. Nat Ecol Evol. 2019;3:430–439.

Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim S, Tanaka T.Congenit Anom (Kyoto). 2016; 56(1):18-27.

Sharma DK, Ansari BA; Effect of synthetic pyrethroid Deltamethrin and the neem based-based pesticide Achook on the reproductive ability of zebrafish, Danio rerio (Cyprinidae). Arch. Pol. Fish. 2010;18:157-161.

Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA. Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio) Evid. Based Complement. Altern. Med. 2019;2019.

DOI: 10.1155/2019/3807207

Wan MT, Kuo J, Buday C, Schroeder G, Van AG, Pasternak J; Toxicity of a-, b-, (a+b)-Endosulfan and their formulated and degradation products to Daphnia magna, Hyalella azteca, Oncorhynchu smykiss, Oncorhynchus kisutch and biological implications in streams. Environ. Toxicol. Chem. 2005;24:1146-1154.

Tamboli AM, Bhosle PR, Chonde SG, Ghosh JS, Raut PD. Effect of Endosulfan on indole acetic acid and gibberellins secretion by Azospirillum SPP NCIM-2548 and Azotobacter SPP NCIM-2452. I. Res. J. Environ. Sci. 2012;1(3):1-4.

Smail HF, Hashim Z, Soon WT, Ab Rahman NS, Zainudin AN, Abdul Majid FA. Comparative study of herbal plants on the phenolic and flavonoid content, antioxidant activities and toxicity on cells and zebrafish embryo. J. Tradit. Complement. Med. 2017;7: 452–465.

Alcao MAP, de Souza LS, Dolabella SS, Guimaraes AG, Walker CIB. Zebrafish as an alternative method for determining the embryo toxicity of plant products: A systematic review. Environ. Sci. Pollut. Res. Int. 2018;25:35015–35026.

Chen L, Xu M, Gong Z, Zonyane S, Xu S, Makunga NP. Comparative cardio and developmental toxicity induced by the popular medicinal extract of Sutherlandia frutescens (L.) R.Br. detected using a zebrafish Tuebingen embryo model. BMC Complement. Altern. Med. 2018;18:273.

Fürst R, Zündorf I. Evidence-based phytotherapy in Europe: Where do we stand? Planta Med. 2015;81:962–967.

Yumnamcha T, Nongthomba U, Devi MD. Phytochemical screening and evaluation of genotoxicity and acute toxicity of aqueous extract of Croton tiglium L. Int. J. Sci. Res. Publ. 2014;4:1–5.

Yumnamcha T, Roy D, Devi MD, Nongthoma U. Evaluation of developmental toxicity and apoptotic induction of the aqueous extract of Millettia pachycarpa using zebrafish as model organism. Toxicol. Environ. Chem. 2015;97: 1363–1381.

David Taylor. The pharmaceutical industry and the future of drug development. Pharmaceuticals in the Environment. 2015;1-33.

Spitsbergen JM, Kent ML. The state of the art of the Zebrafish model for toxicology and toxicologic pathology research-advantages and current limitations. Toxicol. Pathol. 2003;31: 62-87.

Caballero MV, Candiracci M. Zebrafish as Toxicological model for screening and recapitulate human diseases. J. Unexplor. Med. Data. 2018;3:4.

Hill AJ, Teraoka H, Heideman W, Peterson RE. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol. Sci. 2005;86:6-19.

Ayoola SO. Impact of agrochemical residues from wetland faring on resources in Oyo State, Nigeria. Ph.D thesis. University of Ibadan, Nigeria. 2007;238.

Aditola JO, Ndimele PE, Omuoha S. Acute toxic effects of Endosulfan (Organochlorine pesticides) to fingerlings of African Catfish (Clarias gariepinus, Burchell, 1822). American -Eur J. Agric. Environ. Sci. 2011;10(5):884-892.

Thiagarajan SK, Krishnan KR, Ei T, Shafie NH, Arapoc DJ, Bahari H. Evaluation of the effect of aqueous Momordica charantia Linn. extract on zebrafish embryo model through acute toxicity assay assessment. Evid. Based Complement. Alternat. Med. 2019;9152757.

Jia Z, Misra HP; Developmental exposure to pesticides Zenib and/or Endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life. Neuro. Toxicol. 2007;28:727-735.

Ramesh H, Munniswamy D. Behavioral responses of the freshwater, Cyprinus carpio (Linnaeus) following sublethal exposure to Chlorpyrifos. Turkish J. fisheries Aquat. Sci. 2009;9:233-238.

Kristen MG, Roberts AP, Ellis N, Swers AD, Klain SJ. Biochemical and behavioral effects of Diazinon exposure in hybrid striped bass. Environ. Toxicol. Chem. 2009;28:105-112.

Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL; A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide Chlorpyrifos in rats and humans. Toxicol. Sci. 2002;66:34- 53.

Reza D, Gholamreza A. Comparative study on the acute toxicity of synthetic pesticides, Permethrin 25% and Monocrotophos 36% and neem-based pesticide, Neem Gold EC 0.03% to juvenile Cyprinus carpio Linn. J. Biol. Environ. Sci. 2012;6(16):105-108.

Bambino K, Chu J. Zebrafish in toxicology and environmental health. Curr. Top. Dev. Biol. 2017;124:331–367

Siang HY, Yee LM, Tse Seng C. Acute toxicity of organochlorine insecticide endosulfan and its effect on behavior and hematological parameters of Asian swamp eel (Monopterus albus, Zuiew). Pest. Biochem. Physiol. 2007; 89: 46-53.

Rahila I, Muhammad J. Acute toxicity of Endosulfan to the fish species Catla, Cirrhina mrigala and Labeo rohita. Int. J. Agri. Biol. 2013;15(1):149-152.

Ayub AD, Hock IC, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V. Biocompatible disulphide cross-linked sodium alginate derivative nanoparticles for oral colon-targeted drug delivery. Artif. Cells Nanomed. Biotechnol. 2019;47:353–369.

Abuchenari A, Hardani K, Abazari S, Naghdi F, Ahmady Keleshteri M, Jamavari A, Modarresi Chahardehi A. Clay-reinforced nanocomposites for the slow release of chemical fertilizers and water retention. J. Compos. Comp. 2020;2:85–91.

Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, Maruyama T, Kim ., Tanaka T. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit. Anom. Kyoto. 2016;56:18–27.

Werimo K, Seinen W. Acute toxicity and lethal body burden of Endosulfan in Tilapia (Oreochromis niloticus, (L). Open Environ. Pollut. Toxicol. J. 2010;2:21-26.

Jones DK, Hammond JI, Relyea. Very highly toxic effects of Endosulfan across nine species of tadpoles: Lag effects and family-level sensitivity. Environ. Toxicol. Chem. 2009;28: 1938-1945.

Omitoyin BO, Ajani EK, Fajinmi A. Toxicity of gramoxone (paraquat) to juveniles of African catfish, Clarias gariepinus (Burchell, 1822). American Eurasians J. Agric. Environ. Sci. 2006;1:26-30.

Han HS, Jang GH, Jun I, Seo H, Park J, Glyn-Jones S, Seok HK, Lee KH, Montovani D, Kim YC, et al. Transgenic zebrafish model for quantification and visualization of tissue toxicity caused by alloying elements in newly developed biodegradable metal. Sci. Rep. 2018;8:13818.

Jayasinghe CD, Jayawardena UA. Toxicity assessment of herbal medicine using Zebrafish embryos: A systematic review. Evid. Based Complement. Altern. Med. 2019;7272808.

Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr. Opin. Chem. Biol. 2015;24:58–70.

Pham DH, Roo BD, Nguyen XB, Vervaele M, Kecskes A, Ny A, Copmans D, Vriens H, Locquet JP., Hoet P, et al. Use of zebrafish larvae as a multi-endpoint platform to characterize the toxicity profile of Silica Nanoparticles. Sci. Rep. 2016;6:37145.

Ansari S, Ansari BA. Embryo and fingerling toxicity of dimethoate and effect on fecundity, viability, hatchability and survival of zebrafish, Danio rerio (Cyprinidae). World J. and Marine Sci. 2011;3(2):167-173.

Adedeji OB, Oadedeji A, Adeyemo OK, Agebede SA. Acute toxicity of Diazinon to the African catfish (Clarias gariepinus). African J. Biotech. 2008;7(5): 651-654.

Ansari S, Ansari BA. Alphamethrin toxicity: Effect on the reproductive ability and the activities of phosphatases in the tissues of Zebrafish, Danio rerio. Int. J. of life Sci. and Pharma Res. 2012;2(1):89-100.

Ansari BA, Sharma DK. Toxic effects of synthetic pyrethroid Deltamethrin and Neem based formulation Achook on Zebrafish, Danio rerio. Trends in Biosciences. 2009;2(2):18-20.

Fazry S, Mohd Noordin MA, Sanusi S, Mat Noor M, Aizat WM, Mat Lazim A, Dyari HRE, Jamar NH, Remali J, Othman BA, et al. Cytotoxicity and toxicity evaluation of Xanthone crude extract on hypoxic human hepatocellular carcinoma and zebrafish (Danio rerio) embryos. Toxics. 2018;6:60.

Ansari BA, Ahmad MK. Toxicity of synthetic pyrethroid Lambda-cyhalothrin and neem based pesticide Neemgold on Zebrafish, Danio rerio (Cyprinidae). Global J. Environ. Res. 2010;4:151-154.

Sappington LC, Mayer FL, Dwyer FJ, Buckler DR, Jones JR, Ellersieck MR. Contaminant sensitivity of threatened and endangered fishes compared to standard surrogate species. Environ. Toxicol. Chem. 2011;20: 2869-2876.

Caballero MV, Candiracci M. Zebrafish as screening model for detecting toxicity and drugs efficacy. J. Unexplor. Med. Data. 2018; 3:4.

Aliakbar H, Reza T, Ahmed S. Investigation of acute toxicity of two pesticides Diazinon and Deltamethrin on Blue Gourami, Trichogaster trichopterus (Pallus). Global Veterinaria, 2012;8(5):440-444.

Muhammad FV, Sayede AH, Aliakbar H. Acute toxicity of two pesticides, Diazinon and Deltamethrin on spirlin, (Alburnoides bipunctatus) larvae and fingerling. J. Toxicol. Environ. Hlth. Sci. 2013;5(6):106-110.

Garcia GR, Noyes PD, Tanguay RL. Advancements in zebrafish applications for 21st century toxicology. Pharmacol. Ther. 2016;161:11–21.

D’Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front. Neurosci. 2018;12:976.